Unknown

Dataset Information

0

Distinct phenotypes in zebrafish models of human startle disease.


ABSTRACT: Startle disease is an inherited neurological disorder that causes affected individuals to suffer noise- or touch-induced non-epileptic seizures, excessive muscle stiffness and neonatal apnea episodes. Mutations known to cause startle disease have been identified in glycine receptor subunit (GLRA1 and GLRB) and glycine transporter (SLC6A5) genes, which serve essential functions at glycinergic synapses. Despite the significant successes in identifying startle disease mutations, many idiopathic cases remain unresolved. Exome sequencing in these individuals will identify new candidate genes. To validate these candidate disease genes, zebrafish is an ideal choice due to rapid knockdown strategies, accessible embryonic stages, and stereotyped behaviors. The only existing zebrafish model of startle disease, bandoneon (beo), harbors point mutations in glrbb (one of two zebrafish orthologs of human GLRB) that cause compromised glycinergic transmission and touch-induced bilateral muscle contractions. In order to further develop zebrafish as a model for startle disease, we sought to identify common phenotypic outcomes of knocking down zebrafish orthologs of two known startle disease genes, GLRA1 and GLRB, using splice site-targeted morpholinos. Although both morphants were expected to result in phenotypes similar to the zebrafish beo mutant, our direct comparison demonstrated that while both glra1 and glrbb morphants exhibited embryonic spasticity, only glrbb morphants exhibited bilateral contractions characteristic of beo mutants. Likewise, zebrafish over-expressing a dominant startle disease mutation (GlyR ?1(R271Q)) exhibited spasticity but not bilateral contractions. Since GlyR ?b can interact with GlyR ? subunits 2-4 in addition to GlyR ?1, loss of the GlyR ?b subunit may produce more severe phenotypes by affecting multiple GlyR subtypes. Indeed, immunohistochemistry of glra1 morphants suggests that in zebrafish, alternate GlyR ? subunits can compensate for the loss of the GlyR ?1 subunit. To address the potential for interplay among GlyR subunits during development, we quantified the expression time-course for genes known to be critical to glycinergic synapse function. We found that GlyR ?2, ?3 and ?4a are expressed in the correct temporal pattern and could compensate for the loss of the GlyR ?1 subunit. Based on our findings, future studies that aim to model candidate startle disease genes in zebrafish should include measures of spasticity and synaptic development.

SUBMITTER: Ganser LR 

PROVIDER: S-EPMC3972633 | biostudies-literature | 2013 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Distinct phenotypes in zebrafish models of human startle disease.

Ganser Lisa R LR   Yan Qing Q   James Victoria M VM   Kozol Robert R   Topf Maya M   Harvey Robert J RJ   Dallman Julia E JE  

Neurobiology of disease 20130909


Startle disease is an inherited neurological disorder that causes affected individuals to suffer noise- or touch-induced non-epileptic seizures, excessive muscle stiffness and neonatal apnea episodes. Mutations known to cause startle disease have been identified in glycine receptor subunit (GLRA1 and GLRB) and glycine transporter (SLC6A5) genes, which serve essential functions at glycinergic synapses. Despite the significant successes in identifying startle disease mutations, many idiopathic cas  ...[more]

Similar Datasets

| S-EPMC4784975 | biostudies-other
| S-EPMC10668224 | biostudies-literature
| S-EPMC10655866 | biostudies-literature
| S-EPMC5886338 | biostudies-literature
| S-BSST804 | biostudies-other
| S-EPMC2851946 | biostudies-literature
| S-EPMC3982096 | biostudies-literature
| S-EPMC5529396 | biostudies-other
| S-EPMC9234528 | biostudies-literature
| S-EPMC6365381 | biostudies-literature