Unknown

Dataset Information

0

Striatal cholinergic interneurons Drive GABA release from dopamine terminals.


ABSTRACT: Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically driven IPSCs were not affected by ablation of striatal fast-spiking interneurons but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons.

SUBMITTER: Nelson AB 

PROVIDER: S-EPMC3976769 | biostudies-literature | 2014 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Striatal cholinergic interneurons Drive GABA release from dopamine terminals.

Nelson Alexandra B AB   Hammack Nora N   Yang Cindy F CF   Shah Nirao M NM   Seal Rebecca P RP   Kreitzer Anatol C AC  

Neuron 20140306 1


Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhi  ...[more]

Similar Datasets

| S-EPMC4624275 | biostudies-literature
| S-EPMC5338756 | biostudies-literature
| S-EPMC6519226 | biostudies-literature
| S-EPMC6175576 | biostudies-literature
| S-EPMC10802245 | biostudies-literature
2023-06-17 | GSE234994 | GEO
| S-EPMC7547109 | biostudies-literature
| S-EPMC3166312 | biostudies-literature
| S-EPMC7380940 | biostudies-literature
| S-EPMC6730305 | biostudies-literature