Unknown

Dataset Information

0

Migration, proliferation, and differentiation of cord blood mesenchymal stromal cells treated with histone deacetylase inhibitor valproic Acid.


ABSTRACT: Mesenchymal stromal cells (MSC) have great potential for cellular therapies as they can be directed to differentiate into certain lineages or to exert paracrine effects at sites of injury. The interactions between stromal cell-derived factor (SDF)-1 and its receptors CXCR4 and CXCR7 play pivotal roles in the migration of MSC to injured tissues. We evaluated whether a histone deacetylase inhibitor valproic acid (VPA) modulates the migration of cord blood (CB-) derived MSC towards SDF-1 and their proliferation and differentiation. We found that in MSC, VPA increased (i) the gene and total protein expression of CXCR4 and CXCR7 and primed migration towards a low gradient of SDF-1, (ii) the gene expression of MMP-2 and secretion and activation of proMMP-2, (iii) the proliferation and gene expression of pluripotency markers SOX2 and Oct-4, and exposure to lower concentrations of VPA (?5?mM) had no effect on their differentiation to osteocytes and chondrocytes. Thus, our study indicates that VPA enhances the migration of CB MSC towards SDF-1 by increasing the expression of CXCR4, CXCR7, and MMP-2. VPA at low concentrations may be used for ex vivo treatment of MSC to increase their recruitment to sites of injury without compromising their ability to proliferate or differentiate.

SUBMITTER: Marquez-Curtis LA 

PROVIDER: S-EPMC3976771 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Migration, proliferation, and differentiation of cord blood mesenchymal stromal cells treated with histone deacetylase inhibitor valproic Acid.

Marquez-Curtis Leah A LA   Qiu Yuanyuan Y   Xu April A   Janowska-Wieczorek Anna A  

Stem cells international 20140316


Mesenchymal stromal cells (MSC) have great potential for cellular therapies as they can be directed to differentiate into certain lineages or to exert paracrine effects at sites of injury. The interactions between stromal cell-derived factor (SDF)-1 and its receptors CXCR4 and CXCR7 play pivotal roles in the migration of MSC to injured tissues. We evaluated whether a histone deacetylase inhibitor valproic acid (VPA) modulates the migration of cord blood (CB-) derived MSC towards SDF-1 and their  ...[more]

Similar Datasets

| S-EPMC6496408 | biostudies-literature
| S-EPMC2922493 | biostudies-literature
| S-EPMC5497358 | biostudies-literature
| S-EPMC8435636 | biostudies-literature
| S-EPMC2856276 | biostudies-literature
| S-EPMC4119015 | biostudies-literature
| S-EPMC4244627 | biostudies-literature
| S-EPMC9355949 | biostudies-literature
| S-EPMC2409381 | biostudies-literature
| S-EPMC6895508 | biostudies-literature