Unknown

Dataset Information

0

Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways.


ABSTRACT: The accumulation of myeloid-derived suppressor cells (MDSC) in tumor-bearing hosts is a hallmark of malignancy-associated inflammation and a major mediator for the induction of T cell suppression in cancer. MDSC can be divided phenotypically into granulocytic (G-MDSC) and monocytic (Mo-MDSC) subgroups. Several mechanisms mediate the induction of T cell anergy by MDSC; however, the specific role of these pathways in the inhibitory activity of MDSC subpopulations remains unclear. Therefore, we aimed to determine the effector mechanisms by which subsets of tumor-infiltrating MDSC block T cell function. We found that G-MDSC had a higher ability to impair proliferation and expression of effector molecules in activated T cells, as compared to Mo-MDSC. Interestingly, both MDSC subgroups inhibited T cells through nitric oxide (NO)-related pathways, but expressed different effector inhibitory mechanisms. Specifically, G-MDSC impaired T cells through the production of peroxynitrites (PNT), while Mo-MDSC suppressed by the release of NO. The production of PNT in G-MDSC depended on the expression of gp91(phox) and endothelial NO synthase (eNOS), while inducible NO synthase (iNOS) mediated the generation of NO in Mo-MDSC. Deletion of eNOS and gp91(phox) or scavenging of PNT blocked the suppressive function of G-MDSC and induced anti-tumoral effects, without altering Mo-MDSC inhibitory activity. Furthermore, NO-scavenging or iNOS knockdown prevented Mo-MDSC function, but did not affect PNT production or suppression by G-MDSC. These results suggest that MDSC subpopulations utilize independent effector mechanisms to regulate T cell function. Inhibition of these pathways is expected to specifically block MDSC subsets and overcome immune suppression in cancer.

SUBMITTER: Raber PL 

PROVIDER: S-EPMC3980009 | biostudies-literature | 2014 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways.

Raber Patrick L PL   Thevenot Paul P   Sierra Rosa R   Wyczechowska Dorota D   Halle Daniel D   Ramirez Maria E ME   Ochoa Augusto C AC   Fletcher Matthew M   Velasco Cruz C   Wilk Anna A   Reiss Krzysztof K   Rodriguez Paulo C PC  

International journal of cancer 20131203 12


The accumulation of myeloid-derived suppressor cells (MDSC) in tumor-bearing hosts is a hallmark of malignancy-associated inflammation and a major mediator for the induction of T cell suppression in cancer. MDSC can be divided phenotypically into granulocytic (G-MDSC) and monocytic (Mo-MDSC) subgroups. Several mechanisms mediate the induction of T cell anergy by MDSC; however, the specific role of these pathways in the inhibitory activity of MDSC subpopulations remains unclear. Therefore, we aim  ...[more]

Similar Datasets

| 2381881 | ecrin-mdr-crc
| S-EPMC6008229 | biostudies-literature
| S-EPMC10363054 | biostudies-literature
| S-EPMC7673381 | biostudies-literature
| S-EPMC10034090 | biostudies-literature
| S-EPMC7856190 | biostudies-literature
| S-EPMC7184799 | biostudies-literature
| S-EPMC4389243 | biostudies-literature
| S-EPMC4108544 | biostudies-literature
| S-EPMC6920088 | biostudies-literature