Unknown

Dataset Information

0

The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models.


ABSTRACT: BACKGROUND:Melanoma is the most deadly form of skin cancer. Expression of oncogenic BRAF or NRAS, which are frequently mutated in human melanomas, promote the formation of nevi but are not sufficient for tumorigenesis. Even with germline mutated p53, these engineered melanomas present with variable onset and pathology, implicating additional somatic mutations in a multi-hit tumorigenic process. RESULTS:To decipher the genetics of these melanomas, we sequence the protein coding exons of 53 primary melanomas generated from several BRAF(V600E) or NRAS(Q61K) driven transgenic zebrafish lines. We find that engineered zebrafish melanomas show an overall low mutation burden, which has a strong, inverse association with the number of initiating germline drivers. Although tumors reveal distinct mutation spectrums, they show mostly C > T transitions without UV light exposure, and enrichment of mutations in melanogenesis, p53 and MAPK signaling. Importantly, a recurrent amplification occurring with pre-configured drivers BRAF(V600E) and p53-/- suggests a novel path of BRAF cooperativity through the protein kinase A pathway. CONCLUSION:This is the first analysis of a melanoma mutational landscape in the absence of UV light, where tumors manifest with remarkably low mutation burden and high heterogeneity. Genotype specific amplification of protein kinase A in cooperation with BRAF and p53 mutation suggests the involvement of melanogenesis in these tumors. This work is important for defining the spectrum of events in BRAF or NRAS driven melanoma in the absence of UV light, and for informed exploitation of models such as transgenic zebrafish to better understand mechanisms leading to human melanoma formation.

SUBMITTER: Yen J 

PROVIDER: S-EPMC3983654 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models.

Yen Jennifer J   White Richard M RM   Wedge David C DC   Van Loo Peter P   de Ridder Jeroen J   Capper Amy A   Richardson Jennifer J   Jones David D   Raine Keiran K   Watson Ian R IR   Wu Chang-Jiun CJ   Cheng Jiqiu J   Martincorena Iñigo I   Nik-Zainal Serena S   Mudie Laura L   Moreau Yves Y   Marshall John J   Ramakrishna Manasa M   Tarpey Patrick P   Shlien Adam A   Whitmore Ian I   Gamble Steve S   Latimer Calli C   Langdon Erin E   Kaufman Charles C   Dovey Mike M   Taylor Alison A   Menzies Andy A   McLaren Stuart S   O'Meara Sarah S   Butler Adam A   Teague Jon J   Lister James J   Chin Lynda L   Campbell Peter P   Adams David J DJ   Zon Leonard I LI   Patton E Elizabeth EE   Stemple Derek L DL   Futreal P Andy PA  

Genome biology 20130101 10


<h4>Background</h4>Melanoma is the most deadly form of skin cancer. Expression of oncogenic BRAF or NRAS, which are frequently mutated in human melanomas, promote the formation of nevi but are not sufficient for tumorigenesis. Even with germline mutated p53, these engineered melanomas present with variable onset and pathology, implicating additional somatic mutations in a multi-hit tumorigenic process.<h4>Results</h4>To decipher the genetics of these melanomas, we sequence the protein coding exo  ...[more]

Similar Datasets

2020-05-19 | GSE139362 | GEO
| S-EPMC5793731 | biostudies-literature
| S-EPMC4324736 | biostudies-literature
| S-EPMC5081629 | biostudies-literature
| S-EPMC7661856 | biostudies-literature
| S-EPMC6162634 | biostudies-literature
2021-03-17 | GSE137244 | GEO
| PRJNA579371 | ENA
| S-EPMC6279340 | biostudies-literature
| S-EPMC7407964 | biostudies-literature