Unknown

Dataset Information

0

Genome segment 5 of Antheraea mylitta cytoplasmic polyhedrosis virus encodes a bona fide guanylyltransferase.


ABSTRACT: BACKGROUND: Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV), a cypovirus of Reoviridae family, infects non mulberry Indian silk worm, Antheraea mylitta, and contains eleven segmented double stranded RNA in its genome (S1-S11). Some of its genome segments (S1-S3, and S6-S11) have been previously characterized but genome segment encoding the viral guanylyltransferase which helps in RNA capping has not been characterized. RESULTS: In this study genome segment 5 (S5) of AmCPV was converted to cDNA, cloned and sequenced. S5 consisted of 2180 nucleotides, with one long ORF of 1818 nucleotides and could encode a protein of 606 amino acids with molecular mass of ~65 kDa (p65). Bioinformatics analysis showed presence of KLRS and HxnH motifs as observed in some other reoviral guanylyltransferase and suggests that S5 may encodes viral guanylyltransferase. The ORF of S5 was expressed in E. coli as 65 kDa his tagged fusion protein, purified through Ni-NTA chromatography and polyclonal antibody was raised. Immunoblot analysis of virion particles with the purified antibody showed specific immunoreactive band and suggests p65 as a viral structural protein. Functional analysis showed that recombinant p65 possesses guanylyltransferase activity, and transfers GMP moiety to the 5' diphosphate (A/G) ended viral RNA after the formation of p65-GMP complex for capping. Kinetic analysis showed K(m) of this enzyme for GTP and RNA was 34.24 uM and 98.35 nM, respectively. Site directed mutagenesis at K21A in KLRS motif, and H93A or H105A in HxnH motif completely abolished the autoguanylylation activity and indicates importance of these residues at these sites. Thermodynamic analysis showed p65-GTP interaction was primarily driven by enthalpy (?H?=?-399.1?±?4.1 kJ/mol) whereas the p65-RNA interaction by favorable entropy (0.043?±?0.0049 kJ/ mol). CONCLUSION: Viral capping enzymes play a critical role in the post transcriptional or post replication modification in case of RNA virus. Our results of cloning, sequencing and functional analysis of AmCPV S5 indicates that S5 encoded p65 through its guanylyltransferase activity can transfer guanine residue to the 5' end of viral RNA for capping. Further studies will help to understand complete capping process of cypoviral RNA during viral replication within the viral capsid.

SUBMITTER: Biswas P 

PROVIDER: S-EPMC4000049 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome segment 5 of Antheraea mylitta cytoplasmic polyhedrosis virus encodes a bona fide guanylyltransferase.

Biswas Poulomi P   Kundu Anirban A   Ghosh Ananta Kumar AK  

Virology journal 20140321


<h4>Background</h4>Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV), a cypovirus of Reoviridae family, infects non mulberry Indian silk worm, Antheraea mylitta, and contains eleven segmented double stranded RNA in its genome (S1-S11). Some of its genome segments (S1-S3, and S6-S11) have been previously characterized but genome segment encoding the viral guanylyltransferase which helps in RNA capping has not been characterized.<h4>Results</h4>In this study genome segment 5 (S5) of AmCPV w  ...[more]

Similar Datasets

| S-EPMC7111928 | biostudies-literature
| S-EPMC2927528 | biostudies-literature
| S-EPMC2573217 | biostudies-literature
| S-EPMC6259105 | biostudies-literature
| S-EPMC113995 | biostudies-literature
| S-EPMC4625160 | biostudies-literature
| S-EPMC110377 | biostudies-literature
| S-EPMC5355851 | biostudies-literature
| S-EPMC9273796 | biostudies-literature
| PRJNA613579 | ENA