Generation of enhanced competitive root-tip-colonizing Pseudomonas bacteria through accelerated evolution.
Ontology highlight
ABSTRACT: A recently published procedure to enrich for efficient competitive root tip colonizers (I. Kuiper, G. V. Bloemberg, and B. J. J. Lugtenberg, Mol. Plant-Microbe Interact. 14:1197-1205) after bacterization of seeds was applied to isolate efficient competitive root tip colonizers for both the dicotyledenous plant tomato and the monocotyledenous plant grass from a random Tn5luxAB mutant bank of the good root colonizer Pseudomonas fluorescens WCS365. Unexpectedly, the best-colonizing mutant, strain PCL1286, showed a strongly enhanced competitive root-tip-colonizing phenotype. Sequence analyses of the Tn5luxAB flanking regions showed that the transposon had inserted in a mutY homolog. This gene is involved in the repair of A. G mismatches caused by spontaneous oxidation of guanine. We hypothesized that, since the mutant is defective in repairing its mismatches, its cells harbor an increased number of mutations and therefore can adapt faster to the environment of the root system. To test this hypothesis, we constructed another mutY mutant and analyzed its competitive root tip colonization behavior prior to and after enrichment. As a control, a nonmutated wild type was subjected to the enrichment procedure. The results of these analyses showed (i) that the enrichment procedure did not alter the colonization ability of the wild type, (ii) that the new mutY mutant was strongly impaired in its colonization ability, but (iii) that after three enrichment cycles it colonized significantly better than its wild type. Therefore it is concluded that both the mutY mutation and the selection procedure are required to obtain an enhanced root-tip-colonizing mutant.
SUBMITTER: de Weert S
PROVIDER: S-EPMC400599 | biostudies-literature | 2004 May
REPOSITORIES: biostudies-literature
ACCESS DATA