Unknown

Dataset Information

0

Insights into the role of the beta-2 microglobulin D-strand in amyloid propensity revealed by mass spectrometry.


ABSTRACT: In vivo beta-2 microglobulin (?2m) forms amyloid fibrils that are associated with the disease dialysis-related amyloidosis. Here, electrospray ionisation-ion mobility spectrometry-mass spectrometry has been used to compare the oligomers formed from wild-type ?2m with those formed from a variant of the protein containing a single point mutation in the D strand, H51A, during in vitro fibril assembly. Using the amyloid-binding fluorescent dye, Thioflavin T, to monitor fibrillation kinetics, H51A was shown to exhibit a two-fold increase in the lag-time of fibril formation. Despite this, comparison of the oligomeric species observed during the lag-time of self-aggregation indicated that H51A had a higher population of oligomers, and formed oligomers of higher order, than wild-type ?2m. The cross-sectional areas of the oligomers arising from H51A and wild-type protein were indistinguishable, although the H51A oligomers were shown to have a significantly higher kinetic stability on account of their reluctance to undergo sub-unit exchange when mixed with 15N-labelled protein. Together the data reveal a significant effect of His51, and thus that of the D-strand sequence, on amyloid formation. The results also highlight the power of mass spectrometry in probing complex biochemical mechanisms in real-time.

SUBMITTER: Leney AC 

PROVIDER: S-EPMC4006425 | biostudies-literature | 2014 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Insights into the role of the beta-2 microglobulin D-strand in amyloid propensity revealed by mass spectrometry.

Leney Aneika C AC   Pashley Clare L CL   Scarff Charlotte A CA   Radford Sheena E SE   Ashcroft Alison E AE  

Molecular bioSystems 20131212 3


In vivo beta-2 microglobulin (β2m) forms amyloid fibrils that are associated with the disease dialysis-related amyloidosis. Here, electrospray ionisation-ion mobility spectrometry-mass spectrometry has been used to compare the oligomers formed from wild-type β2m with those formed from a variant of the protein containing a single point mutation in the D strand, H51A, during in vitro fibril assembly. Using the amyloid-binding fluorescent dye, Thioflavin T, to monitor fibrillation kinetics, H51A wa  ...[more]

Similar Datasets

| S-EPMC2872402 | biostudies-literature
| S-EPMC3149750 | biostudies-literature
| S-EPMC2720278 | biostudies-literature
| S-EPMC9282677 | biostudies-literature
| S-EPMC2848472 | biostudies-literature
| S-EPMC2440456 | biostudies-literature
| S-EPMC2242376 | biostudies-literature
| S-EPMC9740911 | biostudies-literature
2007-10-27 | GSE9437 | GEO
| S-EPMC2726924 | biostudies-literature