Project description:Drinking caffeinated coffee has been reported to provide protection against Parkinson's disease (PD). Caffeine is an adenosine A2A receptor (encoded by the gene ADORA2A) antagonist that increases dopaminergic neurotransmission and Cytochrome P450 1A2 (gene: CYP1A2) metabolizes caffeine; thus, gene polymorphisms in ADORA2A and CYP1A2 may influence the effect coffee consumption has on PD risk.In a population-based case-control study (PASIDA) in Denmark (1,556 PD patients and 1,606 birth year- and gender-matched controls), we assessed interactions between lifetime coffee consumption and 3 polymorphisms in ADORA2A and CYP1A2 for all subjects, and incident and prevalent PD cases separately using logistic regression models. We also conducted a meta-analysis combining our results with those from previous studies.We estimated statistically significant interactions for ADORA2A rs5760423 and heavy vs. light coffee consumption in incident (OR interaction = 0.66 [95% CI 0.46-0.94], p = 0.02) but not prevalent PD. We did not observe interactions for CYP1A2 rs762551 and rs2472304 in incident or prevalent PD. In meta-analyses, PD associations with daily coffee consumption were strongest among carriers of variant alleles in both ADORA2A and CYP1A2.We corroborated results from a previous report that described interactions between ADORA2A and CYP1A2 polymorphisms and coffee consumption. Our results also suggest that survivor bias may affect results of studies that enroll prevalent PD cases.
Project description:BACKGROUND AND PURPOSE:In 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine animal models of Parkinson's disease (PD), caffeine protects neurons by blocking the adenosine receptor A2A (ADORA2A). Caffeine is primarily metabolized by cytochrome P450 1A2 (CYP1A2). Our objective was to examine whether ADORA2A and CYP1A2 polymorphisms are associated with PD risk or modify the caffeine-PD association. METHODS:Parkinson's Epidemiology and Genetic Associations Studies in the United States (PEGASUS) included five population-based case-control studies. One laboratory genotyped four ADORA2A and three CYP1A2 polymorphisms in 1325 PD cases and 1735 age- and sex-matched controls. Information regarding caffeine (coffee) consumption and other lifestyle factors came from structured in-person or telephone interviews. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression. RESULTS:Two ADORA2A polymorphisms were inversely associated with PD risk - rs71651683, a 5' variant (adjusted allelic OR = 0.51, 95% CI 0.33-0.80, permutation-adjusted P = 0.015) and rs5996696, a promoter region variant (adjusted OR for AC and CC genotypes compared with the AA wild-type genotype were 0.76 (95% CI 0.57-1.02) and 0.37 (95% CI 0.13-1.01), respectively (permutation-adjusted P for trend = 0.04). CYP1A2 polymorphisms were not associated with PD risk; however, the coffee-PD association was strongest among subjects homozygous for either variant allele rs762551 (P(interaction) = 0.05) or rs2470890 (P(interaction) = 0.04). CONCLUSION:In this consortium study, two ADORA2A polymorphisms were inversely associated with PD risk, but there was weak evidence of interaction with coffee consumption. In contrast, the coffee-PD association was strongest among slow metabolizers of caffeine who were homozygous carriers of the CYP1A2 polymorphisms.
Project description:Studies of gene-environment interactions may help us to understand the disease mechanisms of common and complex diseases such as Parkinson's disease (PD). Sporadic PD, the common form of PD, is thought to be a multifactorial disorder caused by combinations of multiple genetic factors and environmental or life-style exposures. Since one of the most extensively studied life-style factors in PD is coffee/caffeine intake, here, the studies of genetic polymorphisms with life-style interactions of sporadic PD are reviewed, focusing on coffee/caffeine intake.
Project description:Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinson's disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and interaction study (GWAIS), testing each SNP's main-effect plus its interaction with coffee, adjusting for sex, age, and two principal components. We then stratified subjects as heavy or light coffee-drinkers and performed genome-wide association study (GWAS) in each group. We replicated the most significant SNP. Finally, we imputed the NGRC dataset, increasing genomic coverage to examine the region of interest in detail. The primary analyses (GWAIS, GWAS, Replication) were performed using genotyped data. In GWAIS, the most significant signal came from rs4998386 and the neighboring SNPs in GRIN2A. GRIN2A encodes an NMDA-glutamate-receptor subunit and regulates excitatory neurotransmission in the brain. Achieving P(2df)?=?10(-6), GRIN2A surpassed all known PD susceptibility genes in significance in the GWAIS. In stratified GWAS, the GRIN2A signal was present in heavy coffee-drinkers (OR?=?0.43; P?=?6×10(-7)) but not in light coffee-drinkers. The a priori Replication hypothesis that "Among heavy coffee-drinkers, rs4998386_T carriers have lower PD risk than rs4998386_CC carriers" was confirmed: OR(Replication)?=?0.59, P(Replication)?=?10(-3); OR(Pooled)?=?0.51, P(Pooled)?=?7×10(-8). Compared to light coffee-drinkers with rs4998386_CC genotype, heavy coffee-drinkers with rs4998386_CC genotype had 18% lower risk (P?=?3×10(-3)), whereas heavy coffee-drinkers with rs4998386_TC genotype had 59% lower risk (P?=?6×10(-13)). Imputation revealed a block of SNPs that achieved P(2df)<5×10(-8) in GWAIS, and OR?=?0.41, P?=?3×10(-8) in heavy coffee-drinkers. This study is proof of concept that inclusion of environmental factors can help identify genes that are missed in GWAS. Both adenosine antagonists (caffeine-like) and glutamate antagonists (GRIN2A-related) are being tested in clinical trials for treatment of PD. GRIN2A may be a useful pharmacogenetic marker for subdividing individuals in clinical trials to determine which medications might work best for which patients.
Project description:BackgroundMaternal suicide attempts are associated with adverse psychosocial outcomes in children, but the association with chronic morbidity is poorly understood. We examined the relationship between maternal suicide attempt and risk of hospitalization for potentially preventable conditions in offspring.MethodsWe analyzed a longitudinal cohort of 1 032 210 children born in Quebec, Canada between 2006 and 2019. The main exposure measure was maternal suicide attempt before or during pregnancy. Outcomes included child hospitalizations for potentially preventable conditions, including infectious diseases, dental caries, atopy, and injury up to 14 years after birth. We used adjusted Cox proportional hazards regression models to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association of maternal suicide attempt with risk of hospitalization for these outcomes.ResultsCompared with no suicide attempt, children whose mothers attempted suicide had an increased risk of hospitalization for infectious diseases (HR 1.11, 95% CI 1.06-1.16), dental caries (HR 1.31, 95% CI 1.15-1.48), and injury (HR 1.16, 95% CI 1.03-1.31). Risk of hospitalization for any of these outcomes was greater if mothers attempted suicide by hanging (HR 1.46, 95% CI 1.22-1.75), had their first attempt between the age of 25 and 34 years (HR 1.27, 95% CI 1.13-1.42), and had 3 or more attempts (HR 1.56, 95% CI 1.27-1.91). Maternal suicide attempts were more strongly associated with child hospitalization before 10 years of age.ConclusionsChildren whose mothers have a history of suicide attempt have an elevated risk of hospitalization for potentially preventable conditions.
Project description:BackgroundHypertension increases the likelihood of cardiovascular diseases (CVDs). Cytochrome P450 1A2 (CYP1A2) single nucleotide polymorphism (SNP) is related to caffeine metabolism and the risk of CVD among coffee drinkers. CYP1A2 rs762551 influenced the risk of stroke among hypertensive patients. We examined the relationship between hypertension and coffee drinking based on CYP1A2 rs762551 SNP in Taiwanese adults.MethodsWe used data contained in the Taiwan Biobank database (2011-2018) and included 19,133 participants having complete information on hypertension, rs762551 polymorphism, coffee intake, etc. The risk of hypertension was determined using multiple logistic regression.ResultsCoffee intake was significantly associated with a lower risk of hypertension. The odds ratio (OR), 95% confidence interval (CI), and p-value were 0.877, 0.807-0.954, and 0.0032, respectively. CYP1A2 rs762551 was not significantly associated with the risk of hypertension, but it had a significant interactive association with coffee drinking (p value = 0.0303). After stratification by rs762551 genotypes, the inverse coffee drinking-hypertension association was retained, but significant results were observed only in those with the AC + CC genotype (OR 0.678, 95% CI 0.722-900, p value = 0.0001). According to the combination of coffee drinking and rs762551 genotypes (reference group: no coffee drinking and rs762551 AA), the coffee drinking-AC + CC group had a lower risk of hypertension (OR 0.888, 95% CI 0.789-0.999, p value = 0.0483).ConclusionCoffee drinking, particularly among individuals with the CYP1A2 rs762551 AC + CC genotype was associated with lower odds of hypertension.
Project description:Coffee is the most commonly used stimulant and caffeine is its main psychoactive ingredient. The heritability of coffee consumption has been estimated at around 50%. We performed a meta-analysis of four genome-wide association studies of coffee consumption among coffee drinkers from Iceland (n = 2680), The Netherlands (n = 2791), the Sorbs Slavonic population isolate in Germany (n = 771) and the USA (n = 369) using both directly genotyped and imputed single nucleotide polymorphisms (SNPs) (2.5 million SNPs). SNPs at the two most significant loci were also genotyped in a sample set from Iceland (n = 2430) and a Danish sample set consisting of pregnant women (n = 1620). Combining all data, two sequence variants significantly associated with increased coffee consumption: rs2472297-T located between CYP1A1 and CYP1A2 at 15q24 (P = 5.4 · 10(-14)) and rs6968865-T near aryl hydrocarbon receptor (AHR) at 7p21 (P = 2.3 · 10(-11)). An effect of ?0.2 cups a day per allele was observed for both SNPs. CYP1A2 is the main caffeine metabolizing enzyme and is also involved in drug metabolism. AHR detects xenobiotics, such as polycyclic aryl hydrocarbons found in roasted coffee, and induces transcription of CYP1A1 and CYP1A2. The association of these SNPs with coffee consumption was present in both smokers and non-smokers.
Project description:Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) are symptomatically characterized by parkinsonism, with the latter presenting additionally a distinctive range of atypical features. Although the majority of patients with PD and APS appear to be sporadic, genetic causes of several rare monogenic disease variants were identified. The knowledge acquired from these genetic factors indicated that defects in vesicular transport pathways, endo-lysosomal dysfunction, impaired autophagy-lysosomal protein and organelle degradation pathways, ?-synuclein aggregation and mitochondrial dysfunction play key roles in PD pathogenesis. Moreover, membrane dynamics are increasingly recognized as a key player in the disease pathogenesis due lipid homeostasis alterations, associated with lysosomal dysfunction, caused by mutations in several PD and APS genes. The importance of lysosomal dysfunction and lipid homeostasis is strengthened by both genetic discoveries and clinical epidemiology of the association between parkinsonism and lysosomal storage disorders (LSDs), caused by the disruption of lysosomal biogenesis or function. A synergistic coordination between vesicular trafficking, lysosomal and mitochondria defects exist whereby mutations in PD and APS genes encoding proteins primarily involved one PD pathway are frequently associated with defects in other PD pathways as a secondary effect. Moreover, accumulating clinical and genetic observations suggest more complex inheritance patters of familial PD exist, including oligogenic and polygenic inheritance of genes in the same or interconnected PD pathways, further strengthening their synergistic connection.Here, we provide a comprehensive overview of PD and APS genes with functions in vesicular transport, lysosomal and mitochondrial pathways, and highlight functional and genetic evidence of the synergistic connection between these PD associated pathways.