Unknown

Dataset Information

0

Robust photoregulation of GABA(A) receptors by allosteric modulation with a propofol analogue.


ABSTRACT: Photochemical switches represent a powerful method for improving pharmacological therapies and controlling cellular physiology. Here we report the photoregulation of GABA(A) receptors (GABA(A)Rs) by a derivative of propofol (2,6-diisopropylphenol), a GABA(A)R allosteric modulator, which we have modified to contain photoisomerizable azobenzene. Using ?(1)?(2)?(2) GABA(A)Rs expressed in Xenopus laevis oocytes and native GABA(A)Rs of isolated retinal ganglion cells, we show that the trans-azobenzene isomer of the new compound (trans-MPC088), generated by visible light (wavelengths ~440 nm), potentiates the ?-aminobutyric acid-elicited response and, at higher concentrations, directly activates the receptors. cis-MPC088, generated from trans-MPC088 by ultraviolet light (~365 nm), produces little, if any, receptor potentiation/activation. In cerebellar slices, MPC088 co-applied with ?-aminobutyric acid affords bidirectional photomodulation of Purkinje cell membrane current and spike-firing rate. The findings demonstrate photocontrol of GABA(A)Rs by an allosteric ligand, and open new avenues for fundamental and clinically oriented research on GABA(A)Rs, a major class of neurotransmitter receptors in the central nervous system.

SUBMITTER: Yue L 

PROVIDER: S-EPMC4023869 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Robust photoregulation of GABA(A) receptors by allosteric modulation with a propofol analogue.

Yue Lan L   Pawlowski Michal M   Dellal Shlomo S SS   Xie An A   Feng Feng F   Otis Thomas S TS   Bruzik Karol S KS   Qian Haohua H   Pepperberg David R DR  

Nature communications 20120101


Photochemical switches represent a powerful method for improving pharmacological therapies and controlling cellular physiology. Here we report the photoregulation of GABA(A) receptors (GABA(A)Rs) by a derivative of propofol (2,6-diisopropylphenol), a GABA(A)R allosteric modulator, which we have modified to contain photoisomerizable azobenzene. Using α(1)β(2)γ(2) GABA(A)Rs expressed in Xenopus laevis oocytes and native GABA(A)Rs of isolated retinal ganglion cells, we show that the trans-azobenzen  ...[more]

Similar Datasets

| S-EPMC3987987 | biostudies-literature
| S-EPMC3087128 | biostudies-literature
| S-EPMC2721769 | biostudies-literature
| S-EPMC6080888 | biostudies-literature
| S-EPMC7530031 | biostudies-literature
| S-EPMC3752001 | biostudies-literature
| S-EPMC4033940 | biostudies-literature