Unknown

Dataset Information

0

Different expression of miRNAs targeting helicases in rice in response to low and high dose rate ?-ray treatments.


ABSTRACT: Ionizing radiation currently represents an important tool to generate genetic variability that does not exist in nature, especially in plants. Even so, the radiological protection still represents a subject of regulatory concern. In plants, few reports dealing with the effects of ?-rays, in terms of dose rate (rate of energy deposition) and total dose (energy absorbed per unit mass), are available. In addition, plants are known to be more radioresistant than animals. The use of ionizing radiations for studying various aspects of transcription regulation may help elucidate some of the unanswered questions regarding DNA repair in plants. Under these premises, microRNAs have emerged as molecules involved in gene regulation in response to various environmental conditions as well as in other aspects of plant development. Currently, no report on the changes in microRNAs expression patterns in response to ?-ray treatments exists in plants, even if this subject is extensively studies in human cells. The present study deals with the expression profiles of three miRNAs, namely osa-miR414, osa-miR164e and osa-miR408 and their targeted helicase genes (OsABP, OsDBH and OsDSHCT) in response to different doses of ?-rays delivered both at low and high dose rates. The irradiated rice seeds were grown both in the presence of water and 100 mM NaCl solution. DNA damage and reactive species accumulation were registered, but no dose- or time-dependent expression was observed in response to these treatments.

SUBMITTER: Macovei A 

PROVIDER: S-EPMC4024056 | biostudies-literature | 2013 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Different expression of miRNAs targeting helicases in rice in response to low and high dose rate γ-ray treatments.

Macovei Anca A   Tuteja Narendra N  

Plant signaling & behavior 20130708 8


Ionizing radiation currently represents an important tool to generate genetic variability that does not exist in nature, especially in plants. Even so, the radiological protection still represents a subject of regulatory concern. In plants, few reports dealing with the effects of γ-rays, in terms of dose rate (rate of energy deposition) and total dose (energy absorbed per unit mass), are available. In addition, plants are known to be more radioresistant than animals. The use of ionizing radiatio  ...[more]

Similar Datasets

2015-05-14 | GSE62623 | GEO
2015-05-14 | E-GEOD-62623 | biostudies-arrayexpress
| S-EPMC5656900 | biostudies-literature
2017-12-31 | GSE83318 | GEO
| S-EPMC3387041 | biostudies-literature
| S-EPMC7231543 | biostudies-literature
2011-01-01 | GSE20562 | GEO
| S-EPMC3502329 | biostudies-literature
| S-EPMC10047870 | biostudies-literature
| S-EPMC8759253 | biostudies-literature