Projected changes in African easterly wave intensity and track in response to greenhouse forcing.
Ontology highlight
ABSTRACT: Synoptic-scale African easterly waves (AEWs) impact weather throughout the greater Atlantic basin. Over the African continent, AEWs are instrumental in initiating and organizing precipitation in the drought-vulnerable Sahel region. AEWs also serve as the precursors to the most intense Atlantic hurricanes, and contribute to the global transport of Saharan dust. Given the relevance of AEWs for the climate of the greater Atlantic basin, we investigate the response of AEWs to increasing greenhouse gas concentrations. Using an ensemble of general circulation models, we find a robust increase in the strength of the winds associated with AEWs along the Intertropical Front in West Africa by the late 21st century of the representative concentration pathway 8.5. AEW energy increases directly due to an increase in baroclinicity associated with an enhanced meridional temperature gradient between the Sahara and Guinea Coast. Further, the pattern of low-level warming supports AEW development by enhancing monsoon flow, resulting in greater convergence and uplift along the Intertropical Front. These changes in energetics result in robust increases in the occurrence of conditions that currently produce AEWs. Given relationships observed in the current climate, such changes in the location of AEW tracks and the magnitude of AEW winds carry implications for the relationship between AEWs and precipitation in the Sahel, the mobilization of Saharan dust, and the likelihood of cyclogenesis in the Atlantic. Our results therefore suggest that changes in AEW characteristics could play a critical role in shaping the response of Atlantic basin climate to future increases in greenhouse gas concentrations.
SUBMITTER: Skinner CB
PROVIDER: S-EPMC4024927 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA