Unknown

Dataset Information

0

Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park.


ABSTRACT: Roads can fragment and isolate wildlife populations, which will eventually decrease genetic diversity within populations. Wildlife crossing structures may counteract these impacts, but most crossings are relatively new, and there is little evidence that they facilitate gene flow. We conducted a three-year research project in Banff National Park, Alberta, to evaluate the effectiveness of wildlife crossings to provide genetic connectivity. Our main objective was to determine how the Trans-Canada Highway and crossing structures along it affect gene flow in grizzly (Ursus arctos) and black bears (Ursus americanus). We compared genetic data generated from wildlife crossings with data collected from greater bear populations. We detected a genetic discontinuity at the highway in grizzly bears but not in black bears. We assigned grizzly bears that used crossings to populations north and south of the highway, providing evidence of bidirectional gene flow and genetic admixture. Parentage tests showed that 47% of black bears and 27% of grizzly bears that used crossings successfully bred, including multiple males and females of both species. Differentiating between dispersal and gene flow is difficult, but we documented gene flow by showing migration, reproduction and genetic admixture. We conclude that wildlife crossings allow sufficient gene flow to prevent genetic isolation.

SUBMITTER: Sawaya MA 

PROVIDER: S-EPMC4027379 | biostudies-literature | 2014 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park.

Sawaya Michael A MA   Kalinowski Steven T ST   Clevenger Anthony P AP  

Proceedings. Biological sciences 20140219 1780


Roads can fragment and isolate wildlife populations, which will eventually decrease genetic diversity within populations. Wildlife crossing structures may counteract these impacts, but most crossings are relatively new, and there is little evidence that they facilitate gene flow. We conducted a three-year research project in Banff National Park, Alberta, to evaluate the effectiveness of wildlife crossings to provide genetic connectivity. Our main objective was to determine how the Trans-Canada H  ...[more]

Similar Datasets

| S-EPMC3342321 | biostudies-literature
| S-EPMC6972838 | biostudies-literature
| S-EPMC4534036 | biostudies-literature
| S-EPMC5667852 | biostudies-other
| S-EPMC4765961 | biostudies-literature
| S-EPMC7203578 | biostudies-literature
2020-05-26 | PXD006506 | Pride
| S-EPMC5270598 | biostudies-literature
| S-EPMC7995979 | biostudies-literature
| S-EPMC3677373 | biostudies-literature