Ontology highlight
ABSTRACT: Background
Vibrio cholerae, the etiologic agent of cholera, is indigenous to aquatic environments. The V. cholerae genome consists of two chromosomes; the smallest of these harbors a large gene capture and excision system called the superintegron (SI), of ~120 kbp. The flexible nature of the SI that results from gene cassette capture, deletion and rearrangement is thought to make it a hotspot of V. cholerae diversity, but beyond the basic structure it is not clear if there is a core genome in the SI and if so how it is structured. The aim of this study was to explore the core genome structure and the differences in gene content among strains of V. cholerae.Methods
From the complete genomes of seven V. cholerae and one Vibrio mimicus representative strains, we recovered the SI sequences based on the locations of the structural gene IntI4 and the V. cholerae repeats. Analysis of the pangenome, including cluster analysis of functional genes, pangenome profile analysis, genetic variation analysis of functional genes, strain evolution analysis and function enrichment analysis of gene clusters, was performed using a pangenome analysis pipeline in addition to the R scripts, splitsTree4 and genoPlotR.Results and conclusions
Here, we reveal the genetic architecture of the V. cholerae SI. It contains eight core genes when V. mimicus is included and 21 core genes when only V. cholerae strains are considered; many of them are present in several copies. The V. cholerae SI has an open pangenome, which means that V. cholerae may be able to import new gene cassettes to SI. The set of dispensable SI genes is influenced by the niche and type species. The core genes are distributed along the SI, apparently without a position effect.
SUBMITTER: Marin MA
PROVIDER: S-EPMC4032106 | biostudies-literature | 2013
REPOSITORIES: biostudies-literature
F1000Research 20130227
<h4>Background</h4>Vibrio cholerae, the etiologic agent of cholera, is indigenous to aquatic environments. The V. cholerae genome consists of two chromosomes; the smallest of these harbors a large gene capture and excision system called the superintegron (SI), of ~120 kbp. The flexible nature of the SI that results from gene cassette capture, deletion and rearrangement is thought to make it a hotspot of V. cholerae diversity, but beyond the basic structure it is not clear if there is a core geno ...[more]