Unknown

Dataset Information

0

Maximal sum of metabolic exchange fluxes outperforms biomass yield as a predictor of growth rate of microorganisms.


ABSTRACT: Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this, current methods for predicting microbial fitness typically focus on yields [e.g., predictions of biomass yield using GEnome-scale metabolic Models (GEMs)] or notably require many empirical kinetic constants or substrate uptake rates, which render these methods ineffective in cases where fitness derives most directly from growth rate. Here we present a new method for predicting cellular growth rate, termed SUMEX, which does not require any empirical variables apart from a metabolic network (i.e., a GEM) and the growth medium. SUMEX is calculated by maximizing the SUM of molar EXchange fluxes (hence SUMEX) in a genome-scale metabolic model. SUMEX successfully predicts relative microbial growth rates across species, environments, and genetic conditions, outperforming traditional cellular objectives (most notably, the convention assuming biomass maximization). The success of SUMEX suggests that the ability of a cell to catabolize substrates and produce a strong proton gradient enables fast cell growth. Easily applicable heuristics for predicting growth rate, such as what we demonstrate with SUMEX, may contribute to numerous medical and biotechnological goals, ranging from the engineering of faster-growing industrial strains, modeling of mixed ecological communities, and the inhibition of cancer growth.

SUBMITTER: Zarecki R 

PROVIDER: S-EPMC4035307 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Maximal sum of metabolic exchange fluxes outperforms biomass yield as a predictor of growth rate of microorganisms.

Zarecki Raphy R   Oberhardt Matthew A MA   Yizhak Keren K   Wagner Allon A   Shtifman Segal Ella E   Freilich Shiri S   Henry Christopher S CS   Gophna Uri U   Ruppin Eytan E  

PloS one 20140527 5


Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this, current methods for predicting microbial fitness typically focus on yields [e.g., predictions of biomass yield using GEnome-scale metabol  ...[more]

Similar Datasets

| S-EPMC2784518 | biostudies-other
| S-EPMC9615354 | biostudies-literature
| S-EPMC1959540 | biostudies-literature
| S-EPMC7501818 | biostudies-literature
| S-EPMC3390398 | biostudies-literature
2010-06-11 | E-GEOD-2456 | biostudies-arrayexpress
2006-03-04 | GSE2456 | GEO
| S-EPMC10275301 | biostudies-literature
| S-EPMC8392318 | biostudies-literature
| S-EPMC9301249 | biostudies-literature