Transcriptome-wide RNA sequencing analysis of rat skeletal muscle feed arteries. II. Impact of exercise training in obesity.
Ontology highlight
ABSTRACT: We employed next-generation RNA sequencing (RNA-Seq) technology to determine the extent to which exercise training alters global gene expression in skeletal muscle feed arteries and aortic endothelial cells of obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Transcriptional profiles of the soleus and gastrocnemius muscle feed arteries (SFA and GFA, respectively) and aortic endothelial cell-enriched samples from rats that underwent an endurance exercise training program (EndEx; n = 12) or a interval sprint training program (IST; n = 12) or remained sedentary (Sed; n = 12) were examined. In response to EndEx, there were 39 upregulated (e.g., MANF) and 20 downregulated (e.g., ALOX15) genes in SFA and 1 upregulated (i.e., Wisp2) and 1 downregulated (i.e., Crem) gene in GFA [false discovery rate (FDR) < 10%]. In response to IST, there were 305 upregulated (e.g., MANF, HSPA12B) and 324 downregulated genes in SFA and 101 upregulated and 66 downregulated genes in GFA, with an overlap of 32 genes between arteries. Furthermore, in aortic endothelial cells, there were 183 upregulated (e.g., eNOS, SOD-3) and 141 downregulated (e.g., ATF3, Clec1b, npy, leptin) genes with EndEx and 71 upregulated and 69 downregulated genes with IST, with an overlap of 35 between exercise programs. Expression of only two genes (Tubb2b and Slc9a3r2) was altered (i.e., increased) by exercise in all three arteries. The finding that both EndEx and IST produced greater transcriptional changes in the SFA compared with the GFA is intriguing when considering the fact that treadmill bouts of exercise are associated with greater relative increases in blood flow to the gastrocnemius muscle compared with the soleus muscle.
SUBMITTER: Padilla J
PROVIDER: S-EPMC4035783 | biostudies-literature | 2014 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA