Unknown

Dataset Information

0

Specific sorting and post-Golgi trafficking of dendritic potassium channels in living neurons.


ABSTRACT: Proper membrane localization of ion channels is essential for the function of neuronal cells. Particularly, the computational ability of dendrites depends on the localization of different ion channels in specific subcompartments. However, the molecular mechanisms that control ion channel localization in distinct dendritic subcompartments are largely unknown. Here, we developed a quantitative live cell imaging method to analyze protein sorting and post-Golgi vesicular trafficking. We focused on two dendritic voltage-gated potassium channels that exhibit distinct localizations: Kv2.1 in proximal dendrites and Kv4.2 in distal dendrites. Our results show that Kv2.1 and Kv4.2 channels are sorted into two distinct populations of vesicles at the Golgi apparatus. The targeting of Kv2.1 and Kv4.2 vesicles occurred by distinct mechanisms as evidenced by their requirement for specific peptide motifs, cytoskeletal elements, and motor proteins. By live cell and super-resolution imaging, we identified a novel trafficking machinery important for the localization of Kv2.1 channels. Particularly, we identified non-muscle myosin II as an important factor in Kv2.1 trafficking. These findings reveal that the sorting of ion channels at the Golgi apparatus and their subsequent trafficking by unique molecular mechanisms are crucial for their specific localizations within dendrites.

SUBMITTER: Jensen CS 

PROVIDER: S-EPMC4036177 | biostudies-literature | 2014 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Specific sorting and post-Golgi trafficking of dendritic potassium channels in living neurons.

Jensen Camilla Stampe CS   Watanabe Shoji S   Rasmussen Hanne Borger HB   Schmitt Nicole N   Olesen Søren-Peter SP   Frost Nicholas A NA   Blanpied Thomas A TA   Misonou Hiroaki H  

The Journal of biological chemistry 20140225 15


Proper membrane localization of ion channels is essential for the function of neuronal cells. Particularly, the computational ability of dendrites depends on the localization of different ion channels in specific subcompartments. However, the molecular mechanisms that control ion channel localization in distinct dendritic subcompartments are largely unknown. Here, we developed a quantitative live cell imaging method to analyze protein sorting and post-Golgi vesicular trafficking. We focused on t  ...[more]

Similar Datasets

| S-EPMC3964106 | biostudies-literature
| S-EPMC3847879 | biostudies-literature
| S-EPMC60878 | biostudies-literature
| S-EPMC3870925 | biostudies-literature
| S-EPMC4071840 | biostudies-literature
| S-EPMC6051424 | biostudies-literature
| S-EPMC1896267 | biostudies-literature
| S-EPMC6016672 | biostudies-literature
| S-EPMC3795686 | biostudies-literature
| S-EPMC6863556 | biostudies-literature