Unknown

Dataset Information

0

Ancestral Ca2+ signaling machinery in early animal and fungal evolution.


ABSTRACT: Animals and fungi diverged from a common unicellular ancestor of Opisthokonta, yet they exhibit significant differences in their components of Ca2+ signaling pathways. Many Ca2+ signaling molecules appear to be either animal-specific or fungal-specific, which is generally believed to result from lineage-specific adaptations to distinct physiological requirements. Here, by analyzing the genomic data from several close relatives of animals and fungi, we demonstrate that many components of animal and fungal Ca2+ signaling machineries are present in the apusozoan protist Thecamonas trahens, which belongs to the putative unicellular sister group to Opisthokonta. We also identify the conserved portion of Ca2+ signaling molecules in early evolution of animals and fungi following their divergence. Furthermore, our results reveal the lineage-specific expansion of Ca2+ channels and transporters in the unicellular ancestors of animals and in basal fungi. These findings provide novel insights into the evolution and regulation of Ca2+ signaling critical for animal and fungal biology.

SUBMITTER: Cai X 

PROVIDER: S-EPMC4037924 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4169769 | biostudies-literature
| S-EPMC1567900 | biostudies-literature
| S-EPMC7357490 | biostudies-literature
| S-EPMC8706100 | biostudies-literature
| S-EPMC6689584 | biostudies-literature
| S-EPMC9208753 | biostudies-literature
| S-EPMC5472626 | biostudies-literature
| S-EPMC2443182 | biostudies-literature
2015-12-04 | E-GEOD-75649 | biostudies-arrayexpress
| S-EPMC7674686 | biostudies-literature