Unknown

Dataset Information

0

Novel downstream molecular targets of SIRT1 in melanoma: a quantitative proteomics approach.


ABSTRACT: Melanoma is one of the most lethal forms of skin cancer and its incidence is continuing to rise in the United States. Therefore, novel mechanism and target-based strategies are needed for the management of this disease. SIRT1, a NAD(+)-dependent class III histone deacetylase, has been implicated in a variety of physiological processes and pathological conditions. We recently demonstrated that SIRT1 is upregulated in melanoma and its inhibition by a small-molecule, tenovin-1, inhibits cell proliferation and clonogenic survival of melanoma cells, possibly via activating p53. Here, we employed a gel free quantitative proteomics approach to identify the downstream effectors and targets of SIRT1 in melanoma. The human malignant melanoma, G361 cells were treated with tenovin-1 followed by protein extraction, in liquid trypsin digestion, and peptide analyses using nanoLC-MS/MS. A total of 1091 proteins were identified, of which 20 proteins showed significant differential expression with 95% confidence interval. These proteins were subjected to gene ontology and Ingenuity Pathway Analysis (IPA) to obtain the information regarding their biological and molecular functions. Real-Time qRT-PCR validation showed that five of these (PSAP, MYO1B, MOCOS, HIS1H4A and BUB3) were differentially expressed at mRNA levels. Based on their important role in cell cycle regulation, we selected to focus on BUB family proteins (BUB3, as well as BUB1 and BUBR1) for subsequent validation. The qRT-PCR and immunoblot analyses showed that tenovin-1 inhibition of SIRT1 resulted in a downregulation of BUB3, BUB1 and BUBR1 in multiple melanoma cell lines. Since tenovin-1 is an inhibitor of both SIRT1 and SIRT2, we employed lentivirus mediated silencing of SIRT1 and SIRT2 in G361 cells to determine if the observed effects on BUB family proteins are due to SIRT1- or SIRT2- inhibition. We found that only SIRT1 inhibition resulted in a decrease in BUB3, BUB1 and BUBR1. Our study identified the mitotic checkpoint regulator BUB family proteins as novel downstream targets of SIRT1. However, further validation is needed in appropriate models to confirm our findings and expand on our observations.

SUBMITTER: Singh CK 

PROVIDER: S-EPMC4039116 | biostudies-literature | 2014 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Novel downstream molecular targets of SIRT1 in melanoma: a quantitative proteomics approach.

Singh Chandra K CK   George Jasmine J   Nihal Minakshi M   Sabat Grzegorz G   Kumar Raj R   Ahmad Nihal N  

Oncotarget 20140401 7


Melanoma is one of the most lethal forms of skin cancer and its incidence is continuing to rise in the United States. Therefore, novel mechanism and target-based strategies are needed for the management of this disease. SIRT1, a NAD(+)-dependent class III histone deacetylase, has been implicated in a variety of physiological processes and pathological conditions. We recently demonstrated that SIRT1 is upregulated in melanoma and its inhibition by a small-molecule, tenovin-1, inhibits cell prolif  ...[more]

Similar Datasets

| S-EPMC5673532 | biostudies-literature
| S-EPMC7359136 | biostudies-literature
| S-EPMC3444237 | biostudies-literature
| S-EPMC5481331 | biostudies-literature
| S-EPMC3937387 | biostudies-literature
| S-EPMC9541363 | biostudies-literature
| S-EPMC10082492 | biostudies-literature
| S-EPMC3202559 | biostudies-literature
| S-EPMC4047469 | biostudies-literature
| S-EPMC2731973 | biostudies-literature