Unknown

Dataset Information

0

GLI2 induces genomic instability in human keratinocytes by inhibiting apoptosis.


ABSTRACT: Abnormal Sonic Hedgehog signalling leads to increased transcriptional activation of its downstream effector, glioma 2 (GLI2), which is implicated in the pathogenesis of a variety of human cancers. However, the mechanisms underlying the tumorigenic role of GLI2 remain elusive. We demonstrate that overexpression of GLI2-? isoform, which lacks the N-terminal repressor domain (GLI2?N) in human keratinocytes is sufficient to induce numerical and structural chromosomal aberrations, including tetraploidy/aneuploidy and chromosomal translocations. This is coupled with suppression of cell cycle regulators p21(WAF1/CIP1) and 14-3-3?, and strong induction of anti-apoptotic signalling, resulting in a reduction in the ability to eliminate genomically abnormal cells. Overexpression of GLI2?N also rendered human keratinocytes resistant to UVB-mediated apoptosis, whereas inhibition of B-cell lymphoma 2 (BCL-2) restored endogenous (genomic instability (GIN)) and exogenous (UVB) DNA damage-induced apoptosis. Thus, we propose that ectopic expression of GLI2 profoundly affects the genomic integrity of human epithelial cells and contributes to the survival of progenies with genomic alterations by deregulating cell cycle proteins and disabling the apoptotic mechanisms responsible for their elimination. This study reveals a novel role for GLI2 in promoting GIN, a hallmark of human tumors, and identifies potential mechanisms that may provide new opportunities for the design of novel forms of cancer therapeutic strategies.

SUBMITTER: Pantazi E 

PROVIDER: S-EPMC4040660 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

GLI2 induces genomic instability in human keratinocytes by inhibiting apoptosis.

Pantazi E E   Gemenetzidis E E   Trigiante G G   Warnes G G   Shan L L   Mao X X   Ikram M M   Teh M-T MT   Lu Y-J YJ   Philpott M P MP  

Cell death & disease 20140130


Abnormal Sonic Hedgehog signalling leads to increased transcriptional activation of its downstream effector, glioma 2 (GLI2), which is implicated in the pathogenesis of a variety of human cancers. However, the mechanisms underlying the tumorigenic role of GLI2 remain elusive. We demonstrate that overexpression of GLI2-β isoform, which lacks the N-terminal repressor domain (GLI2ΔN) in human keratinocytes is sufficient to induce numerical and structural chromosomal aberrations, including tetraploi  ...[more]

Similar Datasets

2009-01-05 | E-GEOD-10132 | biostudies-arrayexpress
| S-EPMC2907729 | biostudies-literature
2009-01-06 | GSE10132 | GEO
2010-06-28 | GSE16937 | GEO
2010-07-29 | E-GEOD-16937 | biostudies-arrayexpress
| S-EPMC2847232 | biostudies-literature
| S-EPMC5709578 | biostudies-literature
| S-EPMC10168463 | biostudies-literature
| S-EPMC10873199 | biostudies-literature
| S-EPMC8564632 | biostudies-literature