Unknown

Dataset Information

0

A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(-) channel.


ABSTRACT: Apoptotic volume decrease is a pivotal event triggering a cell to undergo apoptosis and is induced by ionic effluxes resulting mainly from increased K(+) and Cl(-) conductances. Here, we demonstrate that in human epithelia HeLa cells both mitochondrion- and death receptor-mediated apoptosis inducers [staurosporine and Fas ligand or tumor necrosis factor (TNF)-alpha] rapidly activate Cl(-) currents that show properties phenotypical of volume-sensitive outwardly rectifying Cl(-) channel currents, including outward rectification, voltage-dependent inactivation gating at large positive potentials, inhibition by osmotic shrinkage, sensitivity to classic Cl(-) channel blockers, and dependence on cytosolic ATP. Staurosporine, but not Fas ligand or TNF-alpha, rapidly (within 30 min) increased the intracellular level of reactive oxygen species (ROS). A ROS scavenger and an NAD(P)H oxidase inhibitor blocked the current activation by staurosporine but not by Fas ligand or TNF-alpha. A ROS scavenger also inhibited apoptotic volume decrease, caspase-3 activation, and apoptotic cell death induced by staurosporine. Thus, it is concluded that an apoptosis-triggering anion conductance is carried by the volume-sensitive outwardly rectifying Cl(-) channel and that the channel activation on apoptotic stimulation with staurosporine, but not with Fas ligand or TNF-alpha, is mediated by ROS.

SUBMITTER: Shimizu T 

PROVIDER: S-EPMC404120 | biostudies-literature | 2004 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(-) channel.

Shimizu Takahiro T   Numata Tomohiro T   Okada Yasunobu Y  

Proceedings of the National Academy of Sciences of the United States of America 20040419 17


Apoptotic volume decrease is a pivotal event triggering a cell to undergo apoptosis and is induced by ionic effluxes resulting mainly from increased K(+) and Cl(-) conductances. Here, we demonstrate that in human epithelia HeLa cells both mitochondrion- and death receptor-mediated apoptosis inducers [staurosporine and Fas ligand or tumor necrosis factor (TNF)-alpha] rapidly activate Cl(-) currents that show properties phenotypical of volume-sensitive outwardly rectifying Cl(-) channel currents,  ...[more]

Similar Datasets

| S-EPMC2936123 | biostudies-literature
| S-EPMC2778012 | biostudies-literature
| S-EPMC6998749 | biostudies-literature
| S-EPMC3298386 | biostudies-other
| S-EPMC4169860 | biostudies-literature
| S-EPMC2921634 | biostudies-literature
| S-EPMC4396825 | biostudies-literature
| S-EPMC2955818 | biostudies-literature
| S-EPMC2688545 | biostudies-literature
| S-EPMC5342765 | biostudies-literature