Project description:Primary dystonia is a movement disorder characterized by sustained muscle contractions and in which dystonia is the only or predominant clinical feature. TOR1A(DYT1) and the transcription factor THAP1(DYT6) are the only genes identified thus far for primary dystonia. Using electromobility shift assays and chromatin immunoprecipitation (ChIP) quantitative polymerase chain reaction (qPCR), we demonstrate a physical interaction between THAP1 and the TOR1A promoter that is abolished by pathophysiologic mutations. Our findings provide the first evidence that causative genes for primary dystonia intersect in a common pathway and raise the possibility of developing novel therapies targeting this pathway.
Project description:Mutations in THAP1 (THAP domain-containing apoptosis-associated protein 1) are responsible for DYT6 dystonia. Until now, more than eighty different mutations in THAP1 gene have been found in patients with primary dystonia, and two third of them are missense mutations. The potential pathogeneses of these missense mutations in human are largely elusive. In the present study, we generated stable transfected human neuronal cell lines expressing wild-type or mutated THAP1 proteins found in DYT6 patients. Transcriptional profiling using microarrays revealed a set of 28 common genes dysregulated in two mutated THAP1 (S21T and F81L) overexpression cell lines suggesting a common mechanism of these mutations. ChIP-seq showed that THAP1 can bind to the promoter of one of these genes, superoxide dismutase 2 (SOD2). Overexpression of THAP1 in SK-N-AS cells resulted in increased SOD2 protein expression, whereas fibroblasts from THAP1 patients have less SOD2 expression, which indicates that SOD2 is a direct target gene of THAP1. In addition, we show that some THAP1 mutations (C54Y and F81L) decrease the protein stability which might also be responsible for altered transcription regulation due to dosage insufficiency. Taking together, the current study showed different potential pathogenic mechanisms of THAP1 mutations which lead to the same consequence of DYT6 dystonia.
Project description:OBJECTIVE:To determine the frequency of DYT1 mutation in Iranian patients affected with primary dystonia. MATERIALS AND METHODS:In this study, we investigated 60 patients with primary dystonia who referred to the Tehran Medical Genetics Laboratory (TMGL) to determine the deletional mutation of 904-906 del GAG in the DYT1 gene. DNA extracted from patients' peripheral blood was subjected to PCR-sequencing for exon 5 of the DYT1 gene. The collection of samples was based on random sampling. RESULTS:The deletional mutation of 904-906 del GAG in the DYT1 gene (15099 to 15101 based on reference sequence: NG_008049.1) was identified in 11 patients (18.33%). The average age of affected patients with this mutation was 13.64 ± 7.4 years. CONCLUSION:It can be concluded that the DYT1 deletional mutation of 904-906 del GAG has a high frequency in Iranian patients in comparison with other non-Jewish populations. Therefore, this particular mutation may be the main representative of pathogenic DYT1 gene for a large proportion of Iranian patients with primary dystonia.
Project description:BackgroundMutations in the thanatos-associated protein domain containing apoptosis-associated protein 1 gene (THAP1) are responsible for adult-onset isolated dystonia (DYT6). However, no neuropathological studies of genetically proven DYT6 cases have been previously reported.ObjectiveWe report the first detailed neuropathological investigation carried out on two DYT6 brains.MethodsGenetic screening for THAP1 gene mutations using standard Sanger polymerase chain reaction sequencing identified 2 cases, 1 with a known pathogenic mutation and the other with a novel mutation. A detailed neuropathological assessment of the cases was performed.ResultsBoth DYT6 cases showed no significant neurodegeneration and no specific disease-related pathology.ConclusionsNo neuropathological features that could be defined as hallmark features of DYT6 dystonia were identified. Our study supports the notion that in isolated dystonia, there is no significant neurodegeneration or morphological lesions that can be identified using routine methods.
Project description:DYT1 dystonia is an autosomal-dominantly inherited movement disorder, which is usually caused by a GAG deletion in the TOR1A gene. Due to the reduced penetrance of ~30-40%, the determination of the mutation in a subject is of limited use with regard to actual manifestation of symptoms. In the present study, we used Affymetrix oligonucleotide microarrays to analyze global gene expression in blood samples of 15 manifesting and 15 non-manifesting mutation carriers in order to identify a susceptibility profile beyond the GAG deletion which is associated with the manifestation of symptoms in DYT1 dystonia.We identified a genetic signature which distinguished between asymptomatic mutation carriers and symptomatic DYT1 patients with 86.7% sensitivity and 100% specificity. This genetic signature could correctly predict the disease state in an independent test set with a sensitivity of 87.5% and a specificity of 85.7%.Conclusively, this genetic signature might provide a possibility to distinguish DYT1 patients from asymptomatic mutation carriers.
Project description:ObjectiveThe aim of this study was to investigate the efficacy of globus pallidus interna deep brain stimulation (GPi-DBS) for treating dystonia due to the GNAL mutation.MethodsWe provide the first report of a dystonia patient with a genetically confirmed GNAL mutation in the Korean population and reviewed the literature on patients with the GNAL mutation who underwent GPi-DBS. We compared the effectiveness of DBS in patients with the GNAL mutation compared to that in patients with DYT1 and DYT6 in a previous study.ResultsPatients with the GNAL mutation and those with DYT1 had higher early responder rates (GNAL, 5/5, 100%; DYT1, 7/7, 100%) than did patients with DYT6 (p = 0.047). The responder rates at late follow-up did not differ statistically among the three groups (p = 0.278). The decrease in the dystonia motor scale score in the GNAL group was 46.9% at early follow-up and 63.4% at late follow-up.ConclusionGPi-DBS would be an effective treatment option for dystonia patients with the GNAL mutation who are resistant to medication or botulinum toxin treatment.
Project description:DYT1 dystonia is an autosomal-dominantly inherited movement disorder, which is usually caused by a GAG deletion in the TOR1A gene. Due to the reduced penetrance of ~30-40%, the determination of the mutation in a subject is of limited use with regard to actual manifestation of symptoms. In the present study, we used Affymetrix oligonucleotide microarrays to analyze global gene expression in blood samples of 15 manifesting and 15 non-manifesting mutation carriers in order to identify a susceptibility profile beyond the GAG deletion which is associated with the manifestation of symptoms in DYT1 dystonia.We identified a genetic signature which distinguished between asymptomatic mutation carriers and symptomatic DYT1 patients with 86.7% sensitivity and 100% specificity. This genetic signature could correctly predict the disease state in an independent test set with a sensitivity of 87.5% and a specificity of 85.7%.Conclusively, this genetic signature might provide a possibility to distinguish DYT1 patients from asymptomatic mutation carriers. Comparison of whole blood expression profiles of patients with DYT1 dystonia with non manifesting mutation carriers and non mutation carriers
Project description:BackgroundMicrofluidic platforms for quantitative evaluation of cell biologic processes allow low cost and time efficient research studies of biological and pathological events, such as monitoring cell migration by real-time imaging. In healthy and disease states, cell migration is crucial in development and wound healing, as well as to maintain the body's homeostasis.New methodThe microfluidic chambers allow precise measurements to investigate whether fibroblasts carrying a mutation in the TOR1A gene, underlying the hereditary neurologic disease--DYT1 dystonia, have decreased migration properties when compared to control cells.ResultsWe observed that fibroblasts from DYT1 patients showed abnormalities in basic features of cell migration, such as reduced velocity and persistence of movement.Comparison with existing methodThe microfluidic method enabled us to demonstrate reduced polarization of the nucleus and abnormal orientation of nuclei and Golgi inside the moving DYT1 patient cells compared to control cells, as well as vectorial movement of single cells.ConclusionWe report here different assays useful in determining various parameters of cell migration in DYT1 patient cells as a consequence of the TOR1A gene mutation, including a microfluidic platform, which provides a means to evaluate real-time vectorial movement with single cell resolution in a three-dimensional environment.
Project description:BackgroundThe clinical phenotype of DYT6 consists mainly of primary craniocervical dystonia. Recently, the THAP1 gene was identified as the cause of DYT6, where a total of 13 mutations have been identified in Amish-Mennonite and European families.MethodsWe sequenced the THAP1 gene in a series of 362 British, genetically undetermined, primary dystonia patients (78 with focal, 186 with segmental, and 98 with generalized dystonia) and in 28 dystonia-manifesting DYT1 patients and 176 normal control individuals.ResultsNine coding mutations were identified in the THAP1 gene. Two were small deletions, 2 were nonsense, and 5 were missense. Eight mutations were heterozygous, and 1 was homozygous. The main clinical presentation of cases with THAP1 mutations was early-onset (<30 years) dystonia in the craniocervical region or the limbs (8 of 9 patients). There was phenotypic variability with laryngeal or oromandibular dystonia present in 3 cases. Four of 9 THAP1 cases developed generalized dystonia.ConclusionsThe number of THAP1 mutations has been significantly expanded, indicating an uncommon but important cause of dystonia. Coding mutations account for 9 of 362 dystonia cases, indicating a mutation frequency of 2.5% of dystonia cases in the population that we have screened. The majority of cases reported here with THAP1 mutations had craniocervical- or limb-onset segmental dystonia, but we also identified 1 homozygous THAP1 mutation, associated initially with writer's dystonia and then developing segmental dystonia. Three of our patients had a nonsense or frameshift THAP1 mutation and the clinical features of laryngeal or oromandibular dystonia. These data suggest that early-onset dystonia that includes the involvement of the larynx or face is frequently associated with THAP1 mutations.