Project description:BackgroundThe relationship between CD36 expression level in platelets and polymorphism of the CD36 gene still needs to be explored. Here, we investigated polymorphisms of the CD36 gene and CD36 expression level in platelets in the Chinese Han population.Materials and methodsA total of 477 samples were sequenced for exons 2 to 14 of the CD36 gene using a polymerase chain reaction sequence-based typing method. In 192 of these individuals the expression levels of CD36 antigen were analysed by flow cytometry. The genotype-phenotype relationship in platelets was analysed.ResultsA total of 22 variants of the CD36 gene were identified, of which five variants (111 A>T, 681 C>A, 1172-1183 del12b, 1236 delT and 1395 A>C) were novel variations, and nine were also found in single nucleotide polymorphism database (dbSNP) but had not been confirmed in individuals with CD36 deficiency. Two variants (329-332 delAC and 1228-1239 del12bp) in the coding region are the most frequent mutations in the Chinese population. Type II CD36 deficiency was identified in seven of 192 individuals, giving a frequency of 3.6%. Individuals with CD36 variations or wild-type genotypes both showed CD36 antigen negative, low-level and high-level expression patterns in platelets. The frequency of the nt-132 A>C polymorphism in the 5'-UTR is relatively high in the Chinese population (0.3516): the expression of CD36 was lower in individuals with nt-132 A>C than in those with the wild-type genotype.DiscussionThe distribution of CD36 gene variants in the Chinese population is different from that previously reported. The levels of expression of CD36 antigen in platelets are not determined directly by the genotypes of the CD36 coding region. This suggests that the molecular basis of type II CD36 deficiency may be derived from combined effects of coding region and potential cis-regulatory elements in the 5'-UTR of the CD36 gene.
Project description:An association study was conducted to investigate the relation between 14 variants of glucose transporter 1 gene (SLC2A1) and the risk of type 2 diabetes (T2DM) leading to nephropathy. We also performed a meta-analysis of 11 studies investigating association between diabetic nephropathy (DN) and SLC2A1 variants. The cohort included 197 cases (T2DM with nephropathy), 155 diseased controls (T2DM without nephropathy) and 246 healthy controls. The association of variants with disease progression was tested using generalized odds ratio (ORG). The risk of type 2 diabetes leading to nephropathy was estimated by the OR of additive and co-dominant models. The mode of inheritance was assessed using the degree of dominance index (h-index). We synthesized results of 11 studies examining association between 5 SLC2A1 variants and DN. ORG was used to assess the association between variants and DN using random effects models. Significant results were derived for co-dominant model of rs12407920 [OR?=?2.01 (1.17-3.45)], rs841847 [OR?=?1.73 (1.17-2.56)] and rs841853 [OR?=?1.74 (1.18-2.55)] and for additive model of rs3729548 [OR?=?0.52 (0.29-0.90)]. The mode of inheritance for rs12407920, rs841847 and rs841853 was 'dominance of each minor allele' and for rs3729548 'non-dominance'. Frequency of one haplotype (C-G-G-A-T-C-C-T-G-T-C-C-A-G) differed significantly between cases and healthy controls [p?=?.014]. Regarding meta-analysis, rs841853 contributed to an increased risk of DN [(ORG?=?1.43 (1.09-1.88); ORG?=?1.58 (1.01-2.48)] between diseased controls versus cases and healthy controls versus cases, respectively. Further studies confirm the association of rs12407920, rs841847, rs841853, as well as rs3729548 and the risk of T2DM leading to nephropathy.
Project description:The CD36 gene encodes for a membrane receptor that facilitates fatty-acid uptake and utilization. Genetic variants of the CD36 gene have been associated with metabolic syndrome (MetS). We aimed to evaluate the association between the rs10499859A>G and rs13246513C>T polymorphisms and MetS components.For this case-control study, 140 MetS and 187 normal subjects were randomly selected from the Tehran Lipid and Glucose Study participants. Biochemical and anthropometrical variables were measured. Genotyping for both single nucleotide polymorphisms (SNPs) was performed by polymerase chain reaction-restriction fragment length polymorphism.Case and control groups were not different in allele and genotype frequencies for these SNPs. However, the A and T alleles of these SNPs were significantly associated with elevated levels of high-density lipoprotein cholesterol (HDL-C) before age and sex adjustment (p=0.027 and 0.016, respectively). Association between the A allele and body mass index (BMI) was also significant after adjustment for MetS under the dominant model (p=0.009, ?(2)=0.68).Based on our results, these polymorphisms do affect HDL-C level and BMI (MetS components), although the effect may be slight and restricted specifically to an environment-genotype.
Project description:Associations between polymorphisms of the CD36 gene and susceptibility to coronary artery heart disease (CHD) are not clear. We assessed allele frequencies and genotype distributions of CD36 gene polymorphisms in 112 CHD patients and 129 control patients using semi-quantitative polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis. Additionally, we detected CD36 mRNA expression by real-time quantitative PCR, and we quantified plasma levels of oxidized low-density lipoprotein (ox-LDL) using an enzyme-linked immunosorbent assay (ELISA). There were no significant differences between the two groups (P>0.05) in allele frequencies of rs1761667 or in genotype distribution and allele frequencies of rs3173798. The genotype distribution of rs1761667 significantly differed between CHD patients and controls (P=0.034), with a significantly higher frequency of the AG genotype in the CHD group compared to the control group (P=0.011). The plasma levels of ox-LDL in patients with the AG genotype were remarkably higher than those with the GG and AA genotypes (P=0.010). In a randomized sample taken from patients in the two groups, the CD36 mRNA expression of the CHD patients was higher than that of the controls. In CHD patients, the CD36 mRNA expression in AG genotype patients was remarkably higher than in those with an AA genotype (P=0.005). After adjusted logistic regression analysis, the AG genotype of rs1761667 was associated with an increased risk of CHD (OR=2.337, 95% CI=1.336-4.087, P=0.003). In conclusion, the rs1761667 polymorphism may be closely associated with developing CHD in the Chongqing Han population of China, and an AG genotype may be a genetic susceptibility factor for CHD.
Project description:The CD36 gene encodes a membrane glycoprotein (type B scavenger receptor, SR-B2) that plays a crucial role in lipid sensing, innate immunity, atherogenesis, and glycolipid metabolism. In this study, we aimed to investigate the association between CD36 gene polymorphisms and intracerebral hemorrhage (ICH) in a Han Chinese population. We performed genotype and allele analyses for eleven single nucleotide polymorphisms (SNPs) of CD36 in a case-controlled study involving 292?ICH patients and 298 control participants. Eleven SNPs were genotyped by the Improved Multiple Ligase Detection Reaction (iMLDR) method. The results indicated that the SNP rs1194182 values were significantly different between ICH group and control group in a dominant model after adjusting for confounding factors. The subgroup analysis conducted for rs1194182 showed that the allele G frequencies were significantly different between ICH patients and controls in hypertension group via a dominant model. We then analyzed the rs1194182 genotype distributions among different groups of the serum lipid groups, including BMI, TC, TG, HDL, and LDL. However, no significant differences were found in the analysis of other subgroups. Taken together, these findings indicate that rs1194182 polymorphism in the CD36 gene was associated with ICH, and genotype GG could be an independent predictor.
Project description:ObjectivePuerto Ricans experience a high prevalence of several chronic conditions, including metabolic syndrome. Genetic variants of the CD36 gene have been associated with metabolic syndrome. We aimed to determine the association between 6 single nucleotide polymorphisms (SNPs) for CD36 and metabolic syndrome and its components in Puerto Ricans (45-75 year) living in the Greater Boston area.MethodsAssociations between each SNP, metabolic syndrome and its components were examined using multivariate logistic regression models. Haplotype trend regression analysis was used to determine associations between haplotypes and metabolic syndrome.ResultsFor two SNPs of CD36 (rs1049673 and rs3211931), homozygous subjects of the minor allele (G and T, respectively) were associated with a higher likelihood of metabolic syndrome (odds ratio (OR) (95% confidence interval (CI)): 1.89 (1.0, 3.5) and 1.77 (1.0, 3.1), respectively) relative to carriers of the major allele. Although CD36 haplotypes were not significantly associated with metabolic syndrome overall (global significance, P=0.23), one haplotype (G-C-C vs. C-C-C (reference haplotype)) was marginally associated (P=0.049).ConclusionSNPs of CD36 were associated with metabolic syndrome in Puerto Ricans. Prospective studies should further explore the role of CD36 variants in the development of this condition.
Project description:Migraine is a common and complex neurological disease potentially caused by a polygenic interaction of multiple gene variants. Many genes associated with migraine are involved in pathways controlling the synaptic function and neurotransmitters release. However, the molecular mechanisms underpinning migraine need to be further explored.Recent studies raised the possibility that migraine may arise from the effect of regulatory non-coding variants. In this study, we explored the effect of candidate non-coding variants potentially associated with migraine and predicted to lie within regulatory elements: VAMP2_rs1150, SNAP25_rs2327264, and STX1A_rs6951030. The involvement of these genes, which are constituents of the SNARE complex involved in membrane fusion and neurotransmitter release, underscores their significance in migraine pathogenesis. Our reporter gene assays confirmed the impact of at least two of these non-coding variants. VAMP2 and SNAP25 risk alleles were associated with a decrease and increase in gene expression, respectively, while STX1A risk allele showed a tendency to reduce luciferase activity in neuronal-like cells. Therefore, the VAMP2_rs1150 and SNAP25_rs2327264 non-coding variants affect gene expression, which may have implications in migraine susceptibility. Based on previous in silico analysis, it is plausible that these variants influence the binding of regulators, such as transcription factors and micro-RNAs. Still, further studies exploring these mechanisms would be important to shed light on the association between SNAREs dysregulation and migraine susceptibility.
Project description:CD36 (cluster of differentiation 36) is a membrane protein involved in lipid metabolism and has been linked to pathological conditions associated with metabolic disorders, such as diabetes and dyslipidemia. A case-control study was conducted and included 177 patients with type-2 diabetes mellitus (T2DM) and 173 control subjects to study the involvement of CD36 gene rs1761667 (G>A) and rs1527483 (C>T) polymorphisms in the pathogenesis of T2DM and dyslipidemia among Jordanian population. Lipid profile, blood sugar, gender and age were measured and recorded. Also, genotyping analysis for both polymorphisms was performed. Following statistical analysis, 10 different neural networks and machine learning (ML) tools were used to predict subjects with diabetes or dyslipidemia. Towards further understanding of the role of CD36 protein and gene in T2DM and dyslipidemia, a protein-protein interaction network and meta-analysis were carried out. For both polymorphisms, the genotypic frequencies were not significantly different between the two groups (p > 0.05). On the other hand, some ML tools like multilayer perceptron gave high prediction accuracy (≥ 0.75) and Cohen's kappa (κ) (≥ 0.5). Interestingly, in K-star tool, the accuracy and Cohen's κ values were enhanced by including the genotyping results as inputs (0.73 and 0.46, respectively, compared to 0.67 and 0.34 without including them). This study confirmed, for the first time, that there is no association between CD36 polymorphisms and T2DM or dyslipidemia among Jordanian population. Prediction of T2DM and dyslipidemia, using these extensive ML tools and based on such input data, is a promising approach for developing diagnostic and prognostic prediction models for a wide spectrum of diseases, especially based on large medical databases.
Project description:The metabolism of xenobiotics is regulated by phase I and II enzymes, and by transporters encoded by the absorption, distribution, metabolism, and excretion (ADME) genes. It is known that the activity of these proteins is influenced by the presence of polymorphic variants in the corresponding gene that can account for the inter-individual variability in both xenobiotic response/toxicity and disease predisposition. Exposure to pesticides and toxic substances, many of which are substrates of ADME-associated proteins, has been demonstrated to increase the risk of Multiple Myeloma (MM). To investigate the inter-individual variability of ADME genes as a risk factor for MM risk, we compared DMET Plus genotyping data from 65 MM patients with 59 CEU Hapmap controls (GPL17860).
Project description:Increasing amounts of evidence has demonstrated that T2DM (Type 2 Diabetes Mellitus) patients have increased susceptibility to CRC (colorectal cancer). As HHEX is a recognized susceptibility gene in T2DM, this work was focused on two SNPs in HHEX, rs1111875 and rs7923837, to study their association with CRC. T2DM patients without CRC (T2DM-only, n=300), T2DM with CRC (T2DM/CRC, n=135), cancer-free controls (Control, n=570), and CRC without T2DM (CRC-only, n=642) cases were enrolled. DNA samples were extracted from the peripheral blood leukocytes of the patients and sequenced by direct sequencing. The χ2 test was used to compare categorical data. We found that in T2DM patients, rs1111875 but not the rs7923837 in HHEX gene was associated with the occurrence of CRC (p= 0.006). for rs1111875, TC/CC patients had an increased risk of CRC (p=0.019, OR=1.592, 95%CI=1.046-2.423). Moreover, our results also indicated that the two variants of HEEX gene could be risk factors for CRC in general population, independent on T2DM (p< 0.001 for rs1111875, p=0.001 for rs7923837). For rs1111875, increased risk of CRC was observed in TC or TC/CC than CC individuals (p<0.001, OR= 1.780, 95%CI= 1.385-2.287; p<0.001, OR= 1.695, 95%CI= 1.335-2.152). For rs7923837, increased CRC risk was observed in AG, GG, and AG/GG than AA individuals (p< 0.001, OR= 1.520, 95%CI= 1.200-1.924; p=0.036, OR= 1.739, 95%CI= 0.989-3.058; p< 0.001, OR= 1.540, 95%CI= 1.225-1.936). This finding highlights the potentially functional alteration with HHEX rs1111875 and rs7923837 polymorphisms may increase CRC susceptibility. Risk effects and the functional impact of these polymorphisms need further validation.