Unknown

Dataset Information

0

On schemes of combinatorial transcription logic.


ABSTRACT: Cells receive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate specific genetic responses. Here we explore theoretically the potentials and limitations of combinatorial signal integration at the level of cis-regulatory transcription control. Our analysis suggests that many complex transcription-control functions of the type encountered in higher eukaryotes are already implementable within the much simpler bacterial transcription system. Using a quantitative model of bacterial transcription and invoking only specific protein-DNA interaction and weak glue-like interaction between regulatory proteins, we show explicit schemes to implement regulatory logic functions of increasing complexity by appropriately selecting the strengths and arranging the relative positions of the relevant protein-binding DNA sequences in the cis-regulatory region. The architectures that emerge are naturally modular and evolvable. Our results suggest that the transcription regulatory apparatus is a "programmable" computing machine, belonging formally to the class of Boltzmann machines. Crucial to our results is the ability to regulate gene expression at a distance. In bacteria, this can be achieved for isolated genes via DNA looping controlled by the dimerization of DNA-bound proteins. However, if adopted extensively in the genome, long-distance interaction can cause unintentional intergenic cross talk, a detrimental side effect difficult to overcome by the known bacterial transcription-regulation systems. This may be a key factor limiting the genome-wide adoption of complex transcription control in bacteria. Implications of our findings for combinatorial transcription control in eukaryotes are discussed.

SUBMITTER: Buchler NE 

PROVIDER: S-EPMC404558 | biostudies-literature | 2003 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

On schemes of combinatorial transcription logic.

Buchler Nicolas E NE   Gerland Ulrich U   Hwa Terence T  

Proceedings of the National Academy of Sciences of the United States of America 20030417 9


Cells receive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate specific genetic responses. Here we explore theoretically the potentials and limitations of combinatorial signal integration at the level of cis-regulatory transcription control. Our analysis suggests that many complex transcription-control functions of the type encountered in higher eukaryotes are already implementable within the much simpler bacterial transcription system.  ...[more]

Similar Datasets

| S-EPMC6263354 | biostudies-literature
| S-EPMC5964972 | biostudies-literature
| S-EPMC10461128 | biostudies-literature
| S-EPMC9177788 | biostudies-literature
| S-EPMC10219599 | biostudies-literature
| S-EPMC7804116 | biostudies-literature
| S-EPMC6315349 | biostudies-literature
| S-EPMC7541647 | biostudies-literature
| S-EPMC8259978 | biostudies-literature
| S-EPMC546154 | biostudies-literature