Unknown

Dataset Information

0

Mechanical control of the sense of touch by ?-spectrin.


ABSTRACT: The ability to sense and respond to mechanical stimuli emanates from sensory neurons and is shared by most, if not all, animals. Exactly how such neurons receive and distribute mechanical signals during touch sensation remains mysterious. Here, we show that sensation of mechanical forces depends on a continuous, pre-stressed spectrin cytoskeleton inside neurons. Mutations in the tetramerization domain of Caenorhabditis elegans ?-spectrin (UNC-70), an actin-membrane crosslinker, cause defects in sensory neuron morphology under compressive stress in moving animals. Through atomic force spectroscopy experiments on isolated neurons, in vivo laser axotomy and fluorescence resonance energy transfer imaging to measure force across single cells and molecules, we show that spectrin is held under constitutive tension in living animals, which contributes to elevated pre-stress in touch receptor neurons. Genetic manipulations that decrease such spectrin-dependent tension also selectively impair touch sensation, suggesting that such pre-tension is essential for efficient responses to external mechanical stimuli.

SUBMITTER: Krieg M 

PROVIDER: S-EPMC4046587 | biostudies-literature | 2014 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mechanical control of the sense of touch by β-spectrin.

Krieg Michael M   Dunn Alexander R AR   Goodman Miriam B MB  

Nature cell biology 20140223 3


The ability to sense and respond to mechanical stimuli emanates from sensory neurons and is shared by most, if not all, animals. Exactly how such neurons receive and distribute mechanical signals during touch sensation remains mysterious. Here, we show that sensation of mechanical forces depends on a continuous, pre-stressed spectrin cytoskeleton inside neurons. Mutations in the tetramerization domain of Caenorhabditis elegans β-spectrin (UNC-70), an actin-membrane crosslinker, cause defects in  ...[more]

Similar Datasets

| S-EPMC11258356 | biostudies-literature
| S-EPMC7063435 | biostudies-literature
| S-EPMC2211704 | biostudies-literature
| S-EPMC6435810 | biostudies-literature
| S-EPMC2856305 | biostudies-literature
| S-EPMC45004 | biostudies-other
| S-EPMC5164977 | biostudies-literature
| S-EPMC3831459 | biostudies-other
| S-EPMC6952388 | biostudies-literature
| S-EPMC3675649 | biostudies-other