Cytochrome c biogenesis System I: an intricate process catalyzed by a maturase supercomplex?
Ontology highlight
ABSTRACT: Cytochromes c are ubiquitous heme proteins that are found in most living organisms and are essential for various energy production pathways as well as other cellular processes. Their biosynthesis relies on a complex post-translational process, called cytochrome c biogenesis, responsible for the formation of stereo-specific thioether bonds between the vinyl groups of heme b (protoporphyrin IX-Fe) and the thiol groups of apocytochromes c heme-binding site (C1XXC2H) cysteine residues. In some organisms this process involves up to nine (CcmABCDEFGHI) membrane proteins working together to achieve heme ligation, designated the Cytochrome c maturation (Ccm)-System I. Here, we review recent findings related to the Ccm-System I found in bacteria, archaea and plant mitochondria, with an emphasis on protein interactions between the Ccm components and their substrates (apocytochrome c and heme). We discuss the possibility that the Ccm proteins may form a multi subunit supercomplex (dubbed "Ccm machine"), and based on the currently available data, we present an updated version of a mechanistic model for Ccm. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
SUBMITTER: Verissimo AF
PROVIDER: S-EPMC4047167 | biostudies-literature | 2014 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA