Ontology highlight
ABSTRACT: Background
Network meta-analysis can be used to combine results from several randomized trials involving more than two treatments. Potential inconsistency among different types of trial (designs) differing in the set of treatments tested is a major challenge, and application of procedures for detecting and locating inconsistency in trial networks is a key step in the conduct of such analyses.Methods
Network meta-analysis can be very conveniently performed using factorial analysis-of-variance methods. Inconsistency can be scrutinized by inspecting the design × treatment interaction. This approach is in many ways simpler to implement than the more common approach of using treatment-versus-control contrasts.Results
We show that standard regression diagnostics available in common linear mixed model packages can be used to detect and locate inconsistency in trial networks. Moreover, a suitable definition of factors and effects allows devising significance tests for inconsistency.Conclusion
Factorial analysis of variance provides a convenient framework for conducting network meta-analysis, including diagnostic checks for inconsistency.
SUBMITTER: Piepho HP
PROVIDER: S-EPMC4049370 | biostudies-literature | 2014 May
REPOSITORIES: biostudies-literature
BMC medical research methodology 20140510
<h4>Background</h4>Network meta-analysis can be used to combine results from several randomized trials involving more than two treatments. Potential inconsistency among different types of trial (designs) differing in the set of treatments tested is a major challenge, and application of procedures for detecting and locating inconsistency in trial networks is a key step in the conduct of such analyses.<h4>Methods</h4>Network meta-analysis can be very conveniently performed using factorial analysis ...[more]