Ontology highlight
ABSTRACT: Background
Tandem mass spectrometry-based database searching is currently the main method for protein identification in shotgun proteomics. The explosive growth of protein and peptide databases, which is a result of genome translations, enzymatic digestions, and post-translational modifications (PTMs), is making computational efficiency in database searching a serious challenge. Profile analysis shows that most search engines spend 50%-90% of their total time on the scoring module, and that the spectrum dot product (SDP) based scoring module is the most widely used. As a general purpose and high performance parallel hardware, graphics processing units (GPUs) are promising platforms for speeding up database searches in the protein identification process.Results
We designed and implemented a parallel SDP-based scoring module on GPUs that exploits the efficient use of GPU registers, constant memory and shared memory. Compared with the CPU-based version, we achieved a 30 to 60 times speedup using a single GPU. We also implemented our algorithm on a GPU cluster and achieved an approximately favorable speedup.Conclusions
Our GPU-based SDP algorithm can significantly improve the speed of the scoring module in mass spectrometry-based protein identification. The algorithm can be easily implemented in many database search engines such as X!Tandem, SEQUEST, and pFind. A software tool implementing this algorithm is available at http://www.comp.hkbu.edu.hk/~youli/ProteinByGPU.html.
SUBMITTER: Li Y
PROVIDER: S-EPMC4049470 | biostudies-literature | 2014 Apr
REPOSITORIES: biostudies-literature
Li You Y Chi Hao H Xia Leihao L Chu Xiaowen X
BMC bioinformatics 20140428
<h4>Background</h4>Tandem mass spectrometry-based database searching is currently the main method for protein identification in shotgun proteomics. The explosive growth of protein and peptide databases, which is a result of genome translations, enzymatic digestions, and post-translational modifications (PTMs), is making computational efficiency in database searching a serious challenge. Profile analysis shows that most search engines spend 50%-90% of their total time on the scoring module, and t ...[more]