Unknown

Dataset Information

0

Ultrasound-guided tissue fractionation by high intensity focused ultrasound in an in vivo porcine liver model.


ABSTRACT: The clinical use of high intensity focused ultrasound (HIFU) therapy for noninvasive tissue ablation has been recently gaining momentum. In HIFU, ultrasound energy from an extracorporeal source is focused within the body to ablate tissue at the focus while leaving the surrounding organs and tissues unaffected. Most HIFU therapies are designed to use heating effects resulting from the absorption of ultrasound by tissue to create a thermally coagulated treatment volume. Although this approach is often successful, it has its limitations, such as the heat sink effect caused by the presence of a large blood vessel near the treatment area or heating of the ribs in the transcostal applications. HIFU-induced bubbles provide an alternative means to destroy the target tissue by mechanical disruption or, at its extreme, local fractionation of tissue within the focal region. Here, we demonstrate the feasibility of a recently developed approach to HIFU-induced ultrasound-guided tissue fractionation in an in vivo pig model. In this approach, termed boiling histotripsy, a millimeter-sized boiling bubble is generated by ultrasound and further interacts with the ultrasound field to fractionate porcine liver tissue into subcellular debris without inducing further thermal effects. Tissue selectivity, demonstrated by boiling histotripsy, allows for the treatment of tissue immediately adjacent to major blood vessels and other connective tissue structures. Furthermore, boiling histotripsy would benefit the clinical applications, in which it is important to accelerate resorption or passage of the ablated tissue volume, diminish pressure on the surrounding organs that causes discomfort, or insert openings between tissues.

SUBMITTER: Khokhlova TD 

PROVIDER: S-EPMC4050569 | biostudies-literature | 2014 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ultrasound-guided tissue fractionation by high intensity focused ultrasound in an in vivo porcine liver model.

Khokhlova Tatiana D TD   Wang Yak-Nam YN   Simon Julianna C JC   Cunitz Bryan W BW   Starr Frank F   Paun Marla M   Crum Lawrence A LA   Bailey Michael R MR   Khokhlova Vera A VA  

Proceedings of the National Academy of Sciences of the United States of America 20140519 22


The clinical use of high intensity focused ultrasound (HIFU) therapy for noninvasive tissue ablation has been recently gaining momentum. In HIFU, ultrasound energy from an extracorporeal source is focused within the body to ablate tissue at the focus while leaving the surrounding organs and tissues unaffected. Most HIFU therapies are designed to use heating effects resulting from the absorption of ultrasound by tissue to create a thermally coagulated treatment volume. Although this approach is o  ...[more]

Similar Datasets

| S-EPMC4741025 | biostudies-literature
| S-EPMC3535451 | biostudies-literature
| S-EPMC3237413 | biostudies-literature
| S-EPMC5551400 | biostudies-other
| S-EPMC5353785 | biostudies-literature
| S-EPMC9897190 | biostudies-literature
| S-EPMC7806949 | biostudies-literature
| S-EPMC6544891 | biostudies-literature
| S-EPMC5907801 | biostudies-literature
| S-EPMC10150040 | biostudies-literature