Project description:During the years 2008-2010 I. ricinus and I. persulcatus ticks were collected from 64 sites in mainland Estonia and on the island Saaremaa. Presence of B. miyamotoi was found in 0.9% (23/2622) of ticks. The prevalence in I. persulcatus and I. ricinus ticks differed significantly, 2.7% (15/561) and 0.4% (8/2061), respectively. The highest prevalence rates were in found South-Eastern Estonia in an area of I. persulcatus and I. ricinus sympatry and varied from 1.4% (1/73) to 2.8% (5/178). Co-infections with B. burgdorferi s.l. group spirochetes and tick-borne encephalitis virus were also revealed. Genetic characterization of partial 16S rRNA, p66 and glpQ genes demonstrated that Estonian sequences belong to two types of B. miyamotoi and cluster with sequences from Europe and the European part of Russia, as well as with sequences from Siberia, Asia and Japan, here designated as European and Asian types, respectively. Estonian sequences of the European type were obtained from I. ricinus ticks only, whereas the Asian type of B. miyamotoi was shown for both tick species in the sympatric regions.
Project description:Vector competence refers to the ability of an arthropod to acquire, maintain, and successfully transmit a microbial pathogen. Tick-borne relapsing fever (TBRF) spirochetes are globally distributed pathogens, and most species are transmitted by argasid ticks of the genus Ornithodoros. A defining characteristic in vector competence is an apparent specificity of a species of TBRF spirochete to a given tick species. In arid regions of the southern United States, Borrelia turicatae is the primary cause of TBRF. Interestingly, there are two populations of the tick vector distributed throughout this region. Ornithodoros turicata is a western population that ranges from California to Texas. There is a gap through Louisiana, Mississippi, and Alabama where the tick has not been identified. An isolated eastern population exists in Florida and was designated a subspecies, O. turicata americanus. A knowledge gap that exists is the poor understanding of vector competence between western and eastern populations of ticks for B. turicatae. In this study, we generated uninfected colonies of O. turicata that originated in Texas and Kansas and of O. turicataamericanus. B. turicatae acquisition, maintenance through the molt, and subsequent transmission were evaluated. Our findings revealed significant differences in murine infection after feeding infected O. turicata and O. turicataamericanus ticks on the animals. Interestingly, the salivary glands of both tick populations were colonized with B. turicatae to similar densities. Our results suggest that the salivary glands of the tick colonies assessed in this study impact vector competence of the evaluated B. turicatae isolates.IMPORTANCE Several knowledge gaps exist in the vector competence of various geographical populations of O. turicata that transmit B. turicatae A western population of this tick is distributed from California to Texas, and an eastern population exists in Florida. Utilizing western and eastern populations of the vector, we studied acquisition and transmission of two B. turicatae isolates. Regardless of the isolate used, infection frequencies were poor in mice after the eastern population feeding on them. Since salivary gland colonization is essential for B. turicatae transmission, these tissues were further evaluated. Interestingly, the salivary glands from the two populations were similarly colonized with B. turicatae. These findings suggest the role of tick saliva in the establishment of infection and that the salivary glands may be a bottleneck for successful transmission.
Project description:Evidence for the tickborne nature of Alkhurma hemorrhagic fever virus (AHFV) is indirect because AHFV has not been detected in arthropods. One Ornithodoros savignyi tick from Saudi Arabia contained AHFV RNA. This is the first direct evidence that AHFV is a tickborne flavivirus and confirms the association between human AHFV cases and tickbite history.
Project description:We found that 20.5% of patients with an unexplained fever in northwestern Morocco had tick-borne relapsing fever. Molecular detection specific for the 16S rRNA gene identified Borrelia hispanica. The noncoding intergenic spacer sequence domain showed high sensitivity and good resolution for this species.
Project description:We describe a nested polymerase chain reaction for the identification of Borrelia species from serum of patients with unidentified fevers. This technique, based on single nucleotide polymorphisms of the 16S ribosomal RNA gene, was used to test blood samples from 7,750 patients, 33 of whom were diagnosed with spirochete infections. Borrelia crocidurae was the only species identified.
Project description:In West Africa, tick-borne relapsing fever is a neglected arthropod-borne infection caused by Borrelia crocidurae transmitted by the argasid tick Ornithodoros sonrai. From an epidemiological point of view, it is of interest to know whether some genotypes of the vector are specialized in carrying certain genotypes of the pathogen.Thirty-five O. sonrai ticks collected in Mali, Senegal, Mauritania and Morocco confirmed to be B. crocidurae-infected, were genotyped by 16S rRNA gene sequencing. B. crocidurae was genotyped by Multispacer Sequence Typing. The 35 O. sonrai ticks grouped into 12 genotypes with strong geographical structuration. MST resolved the 35 B. crocidurae isolates into 29 genotypes with pairwise divergence of 0.09 - 1.56 % without strict geographical structuration as genotype ST22 was found in Mali, Senegal and Mauritania. There was no evidence of tick-borrelia specialization as one O. sonrai genotype carried several B. crocidurae genotypes and one B. crocidurae genotype was found in different O. sonrai genotypes.This report illustrates a non-specialized circulation of B. crocidurae borreliae within O. sonrai ticks in West Africa.
Project description:BackgroundArgasid ticks (soft ticks) are blood-feeding arthropods that can parasitize rodents, birds, humans, livestock and companion animals. Ticks of the Ornithodoros genus are known to be vectors of relapsing fever borreliosis in humans. In Algeria, little is known about relapsing fever borreliosis and other bacterial pathogens transmitted by argasid ticks.Methodology/principal findingsBetween May 2013 and October 2015, we investigated the presence of soft ticks in 20 rodent burrows, 10 yellow-legged gull (Larus michahellis) nests and animal shelters in six locations in two different bioclimatic zones in Algeria. Six species of argasid ticks were identified morphologically and through 16S rRNA gene sequencing. The presence and prevalence of Borrelia spp., Bartonella spp., Rickettsia spp. and Anaplasmataceae was assessed by qPCR template assays in each specimen. All qPCR-positive samples were confirmed by standard PCR, followed by sequencing the amplified fragments. Two Borrelia species were identified: Borrelia hispanica in Ornithodoros occidentalis in Mostaganem, and Borrelia cf. turicatae in Carios capensis in Algiers. One new Bartonella genotype and one new Anaplasmataceae genotype were also identified in Argas persicus.ConclusionsThe present study highlights the presence of relapsing fever borreliosis agents, although this disease is rarely diagnosed in Algeria. Other bacteria of unknown pathogenicity detected in argasid ticks which may bite humans deserve further investigation.
Project description:The relapsing fever spirochete, Borrelia miyamotoi, is increasingly recognized as a cause of human illness (hard tick-borne relapsing fever) in the United States. We previously demonstrated that single nymphs of the blacklegged tick, Ixodes scapularis, can transmit B. miyamotoi to experimental hosts. However, two recent epidemiological studies from the Northeastern United States indicate that human cases of hard tick-borne relapsing fever peak during late summer, after the spring peak for nymphal tick activity but coincident with the peak seasonal activity period of larval ticks in the Northeast. These epidemiological findings, together with evidence that B. miyamotoi can be passed from infected I. scapularis females to their offspring, suggest that bites by transovarially-infected larval ticks can be an important source of human infection. To demonstrate experimentally that transovarially-infected larval I. scapularis ticks can transmit B. miyamotoi, outbred Mus musculus CD1 mice were exposed to 1 or 2 potentially infected larvae. Individual fed larvae and mouse blood taken 10 d after larvae attached were tested for presence of B. miyamotoi DNA, and mice also were examined for seroreactivity to B. miyamotoi 8 wk after tick feeding. We documented B. miyamotoi DNA in blood from 13 (57%) of 23 mice exposed to a single transovarially-infected larva and in 5 (83%) of 6 mice exposed to two infected larvae feeding simultaneously. All 18 positive mice also demonstrated seroreactivity to B. miyamotoi. Of the 11 remaining mice without detectable B. miyamotoi DNA in their blood 10 d after infected larvae attached, 7 (64%) had evidence of spirochete exposure by serology 8 wk later. Because public health messaging for risk of exposure to Lyme disease spirochetes focuses on nymphal and female I. scapularis ticks, our finding that transovarially-infected larvae effectively transmit B. miyamotoi should lead to refined tick-bite prevention messages.
Project description:Relapsing fever (RF) is an arthropod-borne disease caused by Borrelia spirochete, which is one of the major public health concerns in endemic regions including Africa. However, information on Borrelia spirochetes is limited in Zambia. Here, we investigate the Borrelia spirochetes harbored by Ornithodoros ticks in Zambian National Parks. We analyzed 182 DNA samples pooled from 886 Ornithodoros ticks. Of these, 43 tested positive, and their sequence revealed that the ticks harbored both Old and New World RF borreliae. This research presents the first evidence of Old-World RF borreliae in Zambia. The New World RF borreliae detected herein differed from the Candidatus Borrelia fainii previously reported in Zambia and were closely related to the pathogenic Borrelia sp. VS4 identified in Tanzania. Additionally, Borrelia theileri was recently reported in Zambia. Hence, at least four different Borrelia species occur in Zambia, and the organisms causing relapsing fever there might be more complex than previously thought. We empirically confirmed that real-time PCR with TaqMan minor groove binder probes accurately and simultaneously detected both Old and New World RF. In this manner, they could facilitate quantitative analyses of both types of RF borreliae. Subsequent investigations should endeavor to isolate the aforementioned Borrelia spp. and perform serosurveys on patients with RF.
Project description:Lyme disease (LD) and relapsing fevers (RF) are vector-borne diseases caused by bacteria of the Borrelia genus. Here, we report on the widespread infection by a non-described Borrelia species in passerine-associated ticks in tropical rainforests of French Guiana, South America. This novel Borrelia species is common in two tick species, Amblyomma longirostre and A. geayi, which feed on a broad variety of neotropical mammal and bird species, including migratory species moving to North America. The novel Borrelia species is divergent from the LD and RF species, and is more closely related to the reptile- and echidna-associated Borrelia group that was recently described. Genome sequencing showed that this novel Borrelia sp. has a relatively small genome consisting of a 0.9-Mb-large chromosome and an additional 0.3 Mb dispersed on plasmids. It harbors an RF-like genomic organization but with a unique mixture of LD- and RF-specific genes, including genes used by RF Borrelia for the multiphasic antigen-switching system and a number of immune-reactive protein genes used for the diagnosis of LD. Overall, our data indicate that this novel Borrelia is an intermediate taxon between the LD and RF species that may impact a large host spectrum, including American mammals. The designation "Candidatus Borrelia mahuryensis" is proposed for this species.