Unknown

Dataset Information

0

Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing.


ABSTRACT: Tumor metastasis remains the major cause of cancer-related death, but its molecular basis is still not well understood. Here we uncovered a splicing-mediated pathway that is essential for breast cancer metastasis. We show that the RNA-binding protein heterogeneous nuclear ribonucleoprotein M (hnRNPM) promotes breast cancer metastasis by activating the switch of alternative splicing that occurs during epithelial-mesenchymal transition (EMT). Genome-wide deep sequencing analysis suggests that hnRNPM potentiates TGF? signaling and identifies CD44 as a key downstream target of hnRNPM. hnRNPM ablation prevents TGF?-induced EMT and inhibits breast cancer metastasis in mice, whereas enforced expression of the specific CD44 standard (CD44s) splice isoform overrides the loss of hnRNPM and permits EMT and metastasis. Mechanistically, we demonstrate that the ubiquitously expressed hnRNPM acts in a mesenchymal-specific manner to precisely control CD44 splice isoform switching during EMT. This restricted cell-type activity of hnRNPM is achieved by competition with ESRP1, an epithelial splicing regulator that binds to the same cis-regulatory RNA elements as hnRNPM and is repressed during EMT. Importantly, hnRNPM is associated with aggressive breast cancer and correlates with increased CD44s in patient specimens. These findings demonstrate a novel molecular mechanism through which tumor metastasis is endowed by the hnRNPM-mediated splicing program.

SUBMITTER: Xu Y 

PROVIDER: S-EPMC4052765 | biostudies-literature | 2014 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing.

Xu Yilin Y   Gao Xin D XD   Lee Jae-Hyung JH   Huang Huilin H   Tan Haiyan H   Ahn Jaegyoon J   Reinke Lauren M LM   Peter Marcus E ME   Feng Yue Y   Gius David D   Siziopikou Kalliopi P KP   Peng Junmin J   Xiao Xinshu X   Cheng Chonghui C  

Genes & development 20140519 11


Tumor metastasis remains the major cause of cancer-related death, but its molecular basis is still not well understood. Here we uncovered a splicing-mediated pathway that is essential for breast cancer metastasis. We show that the RNA-binding protein heterogeneous nuclear ribonucleoprotein M (hnRNPM) promotes breast cancer metastasis by activating the switch of alternative splicing that occurs during epithelial-mesenchymal transition (EMT). Genome-wide deep sequencing analysis suggests that hnRN  ...[more]

Similar Datasets

| S-ECPF-GEOD-57243 | biostudies-other
2014-06-03 | E-GEOD-57243 | biostudies-arrayexpress
2014-06-03 | GSE57243 | GEO
2021-05-25 | GSE163025 | GEO
| PRJNA684349 | ENA
| S-EPMC6140460 | biostudies-literature
| S-EPMC9260696 | biostudies-literature
| S-EPMC7847678 | biostudies-literature
| S-EPMC6909542 | biostudies-literature
| S-EPMC7241804 | biostudies-literature