Unknown

Dataset Information

0

Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance.


ABSTRACT: Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureus virulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not ?agr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not ?agr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in S. aureus to promote host defense while sparing agr signaling in S. epidermidis and limiting resistance development.

SUBMITTER: Sully EK 

PROVIDER: S-EPMC4055767 | biostudies-literature | 2014 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance.

Sully Erin K EK   Malachowa Natalia N   Elmore Bradley O BO   Alexander Susan M SM   Femling Jon K JK   Gray Brian M BM   DeLeo Frank R FR   Otto Michael M   Cheung Ambrose L AL   Edwards Bruce S BS   Sklar Larry A LA   Horswill Alexander R AR   Hall Pamela R PR   Gresham Hattie D HD  

PLoS pathogens 20140612 6


Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the  ...[more]

Similar Datasets

2017-02-09 | GSE52978 | GEO
| S-EPMC5824847 | biostudies-literature
2023-06-20 | GSE207045 | GEO
2024-03-05 | E-MTAB-13859 | biostudies-arrayexpress
| S-EPMC7858585 | biostudies-literature
2023-06-20 | GSE206916 | GEO
| S-EPMC6057012 | biostudies-literature
| S-EPMC5099252 | biostudies-literature
2023-06-20 | GSE206889 | GEO
| S-EPMC4685034 | biostudies-literature