Mass-selected site-specific core-fucosylation of ceruloplasmin in alcohol-related hepatocellular carcinoma.
Ontology highlight
ABSTRACT: A mass spectrometry-based methodology has been developed to study changes in core-fucosylation of serum ceruloplasmin that are site-specific between cirrhosis and hepatocellular carcinoma (HCC). The serum samples studied for these changes were from patients affected by cirrhosis or HCC with different etiologies, including alcohol, hepatitis B virus, or hepatitis C virus. The methods involved trypsin digestion of ceruloplasmin into peptides followed by Endo F3 digestion, which removed most of the glycan structure while retaining the innermost N-acetylglucosamine (GlcNAc) and/or core-fucose bound to the peptide. This procedure simplified the structures for further analysis by mass spectrometry, where four core-fucosylated sites (sites 138, 358, 397, and 762) were detected in ceruloplasmin. The core-fucosylation ratio of three of these sites increased significantly in alcohol-related HCC samples (sample size = 24) compared to that in alcohol-related cirrhosis samples (sample size = 18), with the highest AUC value of 0.838 at site 138. When combining the core-fucosylation ratio of site 138 in ceruloplasmin and the alpha-fetoprotein (AFP) value, the AUC value increased to 0.954 (ORsite138 = 12.26, p = 0.017; ORAFP = 3.64, p = 0.022), which was markedly improved compared to that of AFP (AUC = 0.867) (LR test p = 0.0002) alone. However, in HBV- or HCV-related liver diseases, no significant site-specific change in core-fucosylation of ceruloplasmin was observed between HCC and cirrhosis.
SUBMITTER: Yin H
PROVIDER: S-EPMC4059274 | biostudies-literature | 2014 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA