Unknown

Dataset Information

0

Halogen-bonded mesogens direct polymer self-assemblies up to millimetre length scale.


ABSTRACT: Aligning polymeric nanostructures up to macroscale in facile ways remains a challenge in materials science and technology. Here we show polymeric self-assemblies where nanoscale organization guides the macroscopic alignment up to millimetre scale. The concept is shown by halogen bonding mesogenic 1-iodoperfluoroalkanes to a star-shaped ethyleneglycol-based polymer, having chloride end-groups. The mesogens segregate and stack parallel into aligned domains. This leads to layers at ~10 nm periodicity. Combination of directionality of halogen bonding, mesogen parallel stacking and minimization of interfacial curvature translates into an overall alignment in bulk and films up to millimetre scale. Upon heating, novel supramolecular halogen-bonded polymeric liquid crystallinity is also shown. As many polymers present sites capable of receiving halogen bonding, we suggest generic potential of this strategy for aligning polymer self-assemblies.

SUBMITTER: Houbenov N 

PROVIDER: S-EPMC4059921 | biostudies-literature | 2014 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Halogen-bonded mesogens direct polymer self-assemblies up to millimetre length scale.

Houbenov Nikolay N   Milani Roberto R   Poutanen Mikko M   Haataja Johannes J   Dichiarante Valentina V   Sainio Jani J   Ruokolainen Janne J   Resnati Giuseppe G   Metrangolo Pierangelo P   Ikkala Olli O  

Nature communications 20140604


Aligning polymeric nanostructures up to macroscale in facile ways remains a challenge in materials science and technology. Here we show polymeric self-assemblies where nanoscale organization guides the macroscopic alignment up to millimetre scale. The concept is shown by halogen bonding mesogenic 1-iodoperfluoroalkanes to a star-shaped ethyleneglycol-based polymer, having chloride end-groups. The mesogens segregate and stack parallel into aligned domains. This leads to layers at ~10 nm periodici  ...[more]

Similar Datasets

| S-EPMC5355977 | biostudies-literature
| S-EPMC7070622 | biostudies-literature
| S-EPMC9723116 | biostudies-literature
| S-EPMC8508742 | biostudies-literature
| S-EPMC8861932 | biostudies-literature
| S-EPMC7555031 | biostudies-literature
| S-EPMC7287722 | biostudies-literature
| S-EPMC9061708 | biostudies-literature
| S-EPMC6320372 | biostudies-literature