Unknown

Dataset Information

0

Gene pleiotropy constrains gene expression changes in fish adapted to different thermal conditions.


ABSTRACT: Understanding the factors that shape the evolution of gene expression is a central goal in biology, but the molecular mechanisms behind this remain controversial. A related major goal is ascertaining how such factors may affect the adaptive potential of a species or population. Here we demonstrate that temperature-driven gene expression changes in fish adapted to differing thermal environments are constrained by the level of gene pleiotropy estimated by either the number of protein interactions or gene biological processes. Genes with low pleiotropy levels were the main drivers of both plastic and evolutionary global expression profile changes, while highly pleiotropic genes had limited expression response to temperature treatment. Our study provides critical insights into the molecular mechanisms by which natural populations can adapt to changing environments. In addition to having important implications for climate change adaptation, these results suggest that gene pleiotropy should be considered more carefully when interpreting expression profiling data.

SUBMITTER: Papakostas S 

PROVIDER: S-EPMC4059932 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Gene pleiotropy constrains gene expression changes in fish adapted to different thermal conditions.

Papakostas Spiros S   Vøllestad L Asbjørn LA   Bruneaux Matthieu M   Aykanat Tutku T   Vanoverbeke Joost J   Ning Mei M   Primmer Craig R CR   Leder Erica H EH  

Nature communications 20140603


Understanding the factors that shape the evolution of gene expression is a central goal in biology, but the molecular mechanisms behind this remain controversial. A related major goal is ascertaining how such factors may affect the adaptive potential of a species or population. Here we demonstrate that temperature-driven gene expression changes in fish adapted to differing thermal environments are constrained by the level of gene pleiotropy estimated by either the number of protein interactions  ...[more]

Similar Datasets

| S-EPMC4649386 | biostudies-literature
2016-07-25 | GSE80737 | GEO
| S-EPMC4609083 | biostudies-literature
2016-07-25 | E-GEOD-80737 | biostudies-arrayexpress
| S-EPMC2878782 | biostudies-literature
| S-EPMC3446923 | biostudies-literature
| S-EPMC3615526 | biostudies-literature
| S-EPMC6341738 | biostudies-literature
2009-02-28 | GSE14475 | GEO
| S-EPMC4355297 | biostudies-literature