Higher sensitivity of pad2-1 and vtc2-1 mutants to cadmium is related to lower subcellular glutathione rather than ascorbate contents.
Ontology highlight
ABSTRACT: Cadmium (Cd) interferes with ascorbate and glutathione metabolism as it induces the production of reactive oxygen species (ROS), binds to glutathione due to its high affinity to thiol groups, and induces the production of phytochelatins (PCs) which use glutathione as a precursor. In this study, changes in the compartment specific distribution of ascorbate and glutathione were monitored over a time period of 14 days in Cd-treated (50 and 100 μM) Arabidopsis Col-0 plants, and two mutant lines deficient in glutathione (pad2-1) and ascorbate (vtc2-1). Both mutants showed higher sensitivity to Cd than Col-0 plants. Strongly reduced compartment specific glutathione, rather than decreased ascorbate contents, could be correlated with the development of symptoms in these mutants suggesting that higher sensitivity to Cd is related to low glutathione contents rather than low ascorbate contents. On the subcellular level it became obvious that long-term treatment of wildtype plants with Cd induced the depletion of glutathione and ascorbate contents in all cell compartments except chloroplasts indicating an important protective role for antioxidants in chloroplasts against Cd. Additionally, we could observe an immediate decrease of glutathione and ascorbate in all cell compartments 12 h after Cd treatment indicating that glutathione and ascorbate are either withdrawn from or not redistributed into other organelles after their production in chloroplasts, cytosol (production centers for glutathione) and mitochondria (production center for ascorbate). The obtained data is discussed in respect to recently proposed stress models involving antioxidants in the protection of plants against environmental stress conditions.
SUBMITTER: Koffler BE
PROVIDER: S-EPMC4059996 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA