Unknown

Dataset Information

0

Chaos-order transition in foraging behavior of ants.


ABSTRACT: The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants' physical abilities, and ants' knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal.

SUBMITTER: Li L 

PROVIDER: S-EPMC4060675 | biostudies-literature | 2014 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Chaos-order transition in foraging behavior of ants.

Li Lixiang L   Peng Haipeng H   Kurths Jürgen J   Yang Yixian Y   Schellnhuber Hans Joachim HJ  

Proceedings of the National Academy of Sciences of the United States of America 20140527 23


The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants' physical abilities, and ants' knowledge (or experience) on foraging behavior have received relatively little attention in studies of the coll  ...[more]

Similar Datasets

| S-EPMC9287068 | biostudies-literature
| S-EPMC7888555 | biostudies-literature
| S-EPMC9219994 | biostudies-literature
| S-EPMC6876837 | biostudies-literature
| S-EPMC7062076 | biostudies-literature
| S-EPMC5665826 | biostudies-literature
| S-EPMC9176835 | biostudies-literature
| S-EPMC4267257 | biostudies-literature
| S-EPMC3534694 | biostudies-literature
| S-EPMC8861355 | biostudies-literature