Highly enantioselective synthesis of ?-, ?-, and ?-chiral 1-alkanols via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA)-Cu- or Pd-catalyzed cross-coupling.
Ontology highlight
ABSTRACT: Despite recent advances of asymmetric synthesis, the preparation of enantiomerically pure (?99% ee) compounds remains a challenge in modern organic chemistry. We report here a strategy for a highly enantioselective (?99% ee) and catalytic synthesis of various ?- and more-remotely chiral alcohols from terminal alkenes via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA reaction)-Cu- or Pd-catalyzed cross-coupling. ZACA-in situ oxidation of tert-butyldimethylsilyl (TBS)-protected ?-alkene-1-ols produced both (R)- and (S)-?,?-dioxyfunctional intermediates (3) in 80-88% ee, which were readily purified to the ?99% ee level by lipase-catalyzed acetylation through exploitation of their high selectivity factors. These ?,?-dioxyfunctional intermediates serve as versatile synthons for the construction of various chiral compounds. Their subsequent Cu-catalyzed cross-coupling with various alkyl (primary, secondary, tertiary, cyclic) Grignard reagents and Pd-catalyzed cross-coupling with aryl and alkenyl halides proceeded smoothly with essentially complete retention of stereochemical configuration to produce a wide variety of ?-, ?-, and ?-chiral 1-alkanols of ?99% ee. The M?NP ester analysis has been applied to the determination of the enantiomeric purities of ?- and ?-chiral primary alkanols, which sheds light on the relatively undeveloped area of determination of enantiomeric purity and/or absolute configuration of remotely chiral primary alcohols.
SUBMITTER: Xu S
PROVIDER: S-EPMC4060698 | biostudies-literature | 2014 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA