Unknown

Dataset Information

0

Lysine pyrrolation is a naturally-occurring covalent modification involved in the production of DNA mimic proteins.


ABSTRACT: Covalent modification of proteins exerts significant effects on their chemical properties and has important functional and regulatory consequences. We now report the identification and verification of an electrically-active form of modified proteins recognized by a group of small molecules commonly used to interact with DNA. This previously unreported property of proteins was initially discovered when the ?-ketoaldehydes were identified as a source of the proteins stained by the DNA intercalators. Using 1,4-butanedial, the simplest ?-ketoaldehyde, we characterized the structural and chemical criteria governing the recognition of the modified proteins by the DNA intercalators and identified N(?)-pyrrolelysine as a key adduct. Unexpectedly, the pyrrolation conferred an electronegativity and electronic properties on the proteins that potentially constitute an electrical mimic to the DNA. In addition, we found that the pyrrolated proteins indeed triggered an autoimmune response and that the production of specific antibodies against the pyrrolated proteins was accelerated in human systemic lupus erythematosus. These findings and the apparent high abundance of N(?)-pyrrolelysine in vivo suggest that protein pyrrolation could be an endogenous source of DNA mimic proteins, providing a possible link connecting protein turnover and immune disorders.

SUBMITTER: Miyashita H 

PROVIDER: S-EPMC4061549 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Lysine pyrrolation is a naturally-occurring covalent modification involved in the production of DNA mimic proteins.

Miyashita Hiroaki H   Chikazawa Miho M   Otaki Natsuki N   Hioki Yusuke Y   Shimozu Yuki Y   Nakashima Fumie F   Shibata Takahiro T   Hagihara Yoshihisa Y   Maruyama Shoichi S   Matsumi Noriyoshi N   Uchida Koji K  

Scientific reports 20140618


Covalent modification of proteins exerts significant effects on their chemical properties and has important functional and regulatory consequences. We now report the identification and verification of an electrically-active form of modified proteins recognized by a group of small molecules commonly used to interact with DNA. This previously unreported property of proteins was initially discovered when the γ-ketoaldehydes were identified as a source of the proteins stained by the DNA intercalator  ...[more]

Similar Datasets

| S-EPMC2241850 | biostudies-literature
| S-EPMC164868 | biostudies-literature
| S-EPMC9675715 | biostudies-literature
| S-EPMC4611135 | biostudies-literature
| S-EPMC2782038 | biostudies-literature
| S-EPMC1540737 | biostudies-literature
| S-EPMC4136482 | biostudies-literature
| S-EPMC9245130 | biostudies-literature
| S-EPMC2553590 | biostudies-literature
| S-EPMC2631412 | biostudies-literature