Unknown

Dataset Information

0

Moderate drought causes dramatic floral transcriptomic reprogramming to ensure successful reproductive development in Arabidopsis.


ABSTRACT: BACKGROUND: Drought is a major constraint that leads to extensive losses to agricultural yield worldwide. The potential yield is largely determined during inflorescence development. However, to date, most investigations on plant response to drought have focused on vegetative development. This study describes the morphological changes of reproductive development and the comparison of transcriptomes under various drought conditions. RESULTS: The plants grown were studied under two drought conditions: minimum for successful reproduction (45-50% soil water content, moderate drought, MD) and for survival (30-35%, severe drought, SD). MD plants can produce similar number of siliques on the main stem and similar number of seeds per silique comparing with well-water plants. The situation of SD plants was much worse than MD plants. The transcriptomes of inflorescences were further investigated at molecular level using microarrays. Our results showed more than four thousands genes with differential expression under severe drought and less than two thousand changed under moderate drought condition (with 2-fold change and q-value < 0.01). We found a group of genes with increased expression as the drought became more severe, suggesting putative adaptation to the dehydration. Interestingly, we also identified genes with alteration only under the moderate but not the severe drought condition, indicating the existence of distinct sets of genes responsive to different levels of water availability. Further cis-element analyses of the putative regulatory sequences provided more information about the underlying mechanisms for reproductive responses to drought, suggesting possible novel candidate genes that protect those developing flowers under drought stress. CONCLUSIONS: Different pathways may be activated in response to moderate and severe drought in reproductive tissues, potentially helping plant to maximize its yield and balance the resource consumption between vegetative and reproductive development under dehydration stresses.

SUBMITTER: Ma X 

PROVIDER: S-EPMC4067085 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Moderate drought causes dramatic floral transcriptomic reprogramming to ensure successful reproductive development in Arabidopsis.

Ma Xuan X   Sukiran Noor Liyana NL   Ma Hong H   Su Zhao Z  

BMC plant biology 20140613


<h4>Background</h4>Drought is a major constraint that leads to extensive losses to agricultural yield worldwide. The potential yield is largely determined during inflorescence development. However, to date, most investigations on plant response to drought have focused on vegetative development. This study describes the morphological changes of reproductive development and the comparison of transcriptomes under various drought conditions.<h4>Results</h4>The plants grown were studied under two dro  ...[more]

Similar Datasets

| S-EPMC4551083 | biostudies-literature
| S-EPMC9287482 | biostudies-literature
| S-EPMC3231835 | biostudies-other
2008-10-29 | GSE7766 | GEO
2008-10-29 | E-GEOD-7766 | biostudies-arrayexpress
| S-EPMC6458719 | biostudies-literature
| S-EPMC6417471 | biostudies-literature
2014-06-01 | GSE55431 | GEO
| S-EPMC3624089 | biostudies-literature
2012-07-01 | GSE30464 | GEO