Functional heterologous production of reductive dehalogenases from Desulfitobacterium hafniense strains.
Ontology highlight
ABSTRACT: The anaerobic dehalogenation of organohalides is catalyzed by the reductive dehalogenase (RdhA) enzymes produced in phylogenetically diverse bacteria. These enzymes contain a cobamide cofactor at the active site and two iron-sulfur clusters. In this study, the tetrachloroethene (PCE) reductive dehalogenase (PceA) of the Gram-positive Desulfitobacterium hafniense strain Y51 was produced in a catalytically active form in the nondechlorinating, cobamide-producing bacterium Shimwellia blattae (ATCC 33430), a Gram-negative gammaproteobacterium. The formation of recombinant catalytically active PceA enzyme was significantly enhanced when its dedicated PceT chaperone was coproduced and when 5,6-dimethylbenzimidazole and hydroxocobalamin were added to the S. blattae cultures. The experiments were extended to D. hafniense DCB-2, a reductively dehalogenating bacterium harboring multiple rdhA genes. To elucidate the substrate spectrum of the rdhA3 gene product of this organism, the recombinant enzyme was tested for the conversion of different dichlorophenols (DCP) in crude extracts of an RdhA3-producing S. blattae strain. 3,5-DCP, 2,3-DCP, and 2,4-DCP, but not 2,6-DCP and 3,4-DCP, were reductively dechlorinated by the recombinant RdhA3. In addition, this enzyme dechlorinated PCE to trichloroethene at low rates.
SUBMITTER: Mac Nelly A
PROVIDER: S-EPMC4068680 | biostudies-literature | 2014 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA