Unknown

Dataset Information

0

Application of next generation sequencing to CEPH cell lines to discover variants associated with FDA approved chemotherapeutics.


ABSTRACT: The goal of this study was to perform candidate gene association with cytotoxicity of chemotherapeutics in cell line models through resequencing and discovery of rare and low frequency variants along with common variations. Here, an association study of cytotoxicity response to 30 FDA approved drugs was conducted and we applied next generation targeted sequencing technology to discover variants from 103 candidate genes in 95 lymphoblastoid cell lines from 14 CEPH pedigrees. In this article, we called variants across 95 cell lines and performed association analysis for cytotoxic response using the Family Based Association Testing method and software.We called 2281 variable SNP genotypes across the 103 genes for these cell lines and identified three genes of significant association within this marker set. Specifically, ATP-binding cassette, sub-family C, member 5 (ABCC5), metallothionein 1A (MT1A) and NAD(P)H dehydrogenase quinone1 (NQO1) were significantly associated with oxaliplatin drug response. The significant SNP on NQO1 (rs1800566) has been linked with poor survival rates in patients with non-small cell lung cancer treated with cisplatin (which belongs to the same class of drugs as oxaliplatin). A SNP (rs1846692) near the 5' region of MT1A was associated with arsenic trioxide.The results from this study are promising and this serves as a proof-of-principle demonstration of the use of sequencing data in the cytotoxicity models of human cell lines. With increased sample sizes, such studies will be a fast and powerful way to associate common and rare variants with drug response; while overcoming the cost and time limitations to recruit cohorts for association study.

SUBMITTER: Hariani GD 

PROVIDER: S-EPMC4068968 | biostudies-literature | 2014 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Application of next generation sequencing to CEPH cell lines to discover variants associated with FDA approved chemotherapeutics.

Hariani Gunjan D GD   Lam Ernest T ET   Havener Tammy T   Kwok Pui-Yan PY   McLeod Howard L HL   Wagner Michael J MJ   Motsinger-Reif Alison A AA  

BMC research notes 20140612


<h4>Background</h4>The goal of this study was to perform candidate gene association with cytotoxicity of chemotherapeutics in cell line models through resequencing and discovery of rare and low frequency variants along with common variations. Here, an association study of cytotoxicity response to 30 FDA approved drugs was conducted and we applied next generation targeted sequencing technology to discover variants from 103 candidate genes in 95 lymphoblastoid cell lines from 14 CEPH pedigrees. In  ...[more]

Similar Datasets

| S-EPMC3596871 | biostudies-literature
| S-EPMC7599837 | biostudies-literature
2022-02-28 | GSE190845 | GEO
| S-EPMC9784306 | biostudies-literature
2015-07-08 | E-GEOD-60408 | biostudies-arrayexpress
2024-07-25 | PXD054126 | Pride
2015-07-08 | GSE60408 | GEO
| S-EPMC5536290 | biostudies-other
| S-EPMC10561545 | biostudies-literature
| S-EPMC3509312 | biostudies-literature