Unknown

Dataset Information

0

Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM).


ABSTRACT: In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value < 0.01 and fold change > 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained "in silico" must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development.

SUBMITTER: Gomes LL 

PROVIDER: S-EPMC4070031 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM).

Gomes Larissa Luz LL   Moreira Fabiano Cordeiro FC   Hamoy Igor Guerreiro IG   Santos Sidney S   Assumpção Paulo P   Santana Adamo L AL   Ribeiro-Dos-Santos Andrea A  

Bioinformation 20140520 5


In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c,  ...[more]

Similar Datasets

| S-EPMC3161046 | biostudies-literature
| S-EPMC5547710 | biostudies-other
| S-EPMC4027374 | biostudies-literature
| S-EPMC7255855 | biostudies-literature
| S-EPMC5931609 | biostudies-literature
| S-EPMC3847782 | biostudies-literature
| S-EPMC4793242 | biostudies-other
| S-EPMC15868 | biostudies-literature
| S-EPMC2803246 | biostudies-literature
| S-EPMC4082383 | biostudies-literature