Prolonged administration of secretin to normal rats increases biliary proliferation and secretin-induced ductal secretory activity.
Ontology highlight
ABSTRACT: BACKGROUND AND AIM:Cholangiocyte proliferation is coordinately regulated by a number of gastrointestinal hormones/peptides, some of which display stimulatory effects and some have inhibitory actions on cholangiocyte proliferation. Enhanced biliary proliferation [for example after bile duct ligation (BDL) and partial hepatectomy] is associated with increased expression of secretin receptor (SR), cystic fibrosis transmembrane conductance regulator (CFTR) and Cl(-)/HCO3 (-) anion exchanger 2 and secretin-stimulated ductal secretion, whereas loss/damage of bile ducts [for example after acute carbon tetrachloride (CCl4) administration] is associated with reduced secretin-stimulated ductal secretory activity. There is growing information regarding the role of gastrointestinal hormones the regulation of biliary growth. For example, while gastrin, somatostatin and serotonin inhibit bile duct hyperplasia of cholestatic rats by downregulation of cAMP signaling, secretin has been shown to stimulate the proliferation of normal mice by activation of cyclic adenosine 3',5'-monophosphate (cAMP)-dependent signaling. However, no information exists regarding the stimulatory effects of secretin on biliary proliferation of normal rats. Thus, we evaluated the in vivo and in vitro effect of secretin on biliary proliferation, the expression of markers key of ductal secretion and secretin-stimulated ductal secretion. METHODS:Normal male rats were treated with saline or secretin (2.5 nmoles/kg BW/day by osmotic minipumps for one week). We evaluated: (I) intrahepatic bile duct mass (IBDM) in liver sections and PCNA expression in purified cholangiocytes; (II) SR and CFTR mRNA expression and secretin-stimulated cAMP levels in purified cholangiocytes; and (III) secretin-stimulated bile and bicarbonate secretion in bile fistula rats. In vitro, normal rat intrahepatic cholangiocyte lines (NRIC) were treated with BSA (basal) or secretin (100 nM) for 24 to 72 hours in the absence/presence of a PKA or a MEK inhibitor before evaluating proliferation by MTS assays. RESULTS:Prolonged administration of secretin to normal rats increased IBDM and PCNA expression in purified cholangiocytes compared to saline-treated normal rats. Also, secretin increased the expression of proteins (SR and CFTR) that are key in the regulating ductal secretion and enhanced secretin-stimulated cAMP levels and bile and bicarbonate secretion. In vitro, secretin increased the proliferation of NRIC, increase that was prevented by PKA and MAPK inhibitors. CONCLUSIONS:We have demonstrated that secretin stimulates both in vivo and in vitro biliary proliferation and secretin-stimulated ductal secretory activity in normal rats. We suggest that the stimulatory effect of secretin on biliary proliferation and secretion may be important for preventing biliary dysfunction during ductopenic disorders.
SUBMITTER: Guerrier M
PROVIDER: S-EPMC4073314 | biostudies-literature | 2014 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA