Developments in optics and performance at BL13-XALOC, the macromolecular crystallography beamline at the ALBA synchrotron.
Ontology highlight
ABSTRACT: BL13-XALOC is currently the only macromolecular crystallography beamline at the 3 GeV ALBA synchrotron near Barcelona, Spain. The optics design is based on an in-vacuum undulator, a Si(111) channel-cut crystal monochromator and a pair of KB mirrors. It allows three main operation modes: a focused configuration, where both mirrors can focus the beam at the sample position to 52 µm × 5.5 µm FWHM (H × V); a defocused configuration that can match the size of the beam to the dimensions of the crystals or to focus the beam at the detector; and an unfocused configuration, where one or both mirrors are removed from the photon beam path. To achieve a uniform defocused beam, the slope errors of the mirrors were reduced down to 55 nrad RMS by employing a novel method that has been developed at the ALBA high-accuracy metrology laboratory. Thorough commissioning with X-ray beam and user operation has demonstrated an excellent energy and spatial stability of the beamline. The end-station includes a high-accuracy single-axis diffractometer, a removable mini-kappa stage, an automated sample-mounting robot and a photon-counting detector that allows shutterless operation. The positioning tables of the diffractometer and the detector are based on a novel and highly stable design. This equipment, together with the operation flexibility of the beamline, allows a large variety of types of crystals to be tackled, from medium-sized crystals with large unit-cell parameters to microcrystals. Several examples of data collections measured during beamline commissioning are described. The beamline started user operation on 18 July 2012.
SUBMITTER: Juanhuix J
PROVIDER: S-EPMC4073956 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA