Unknown

Dataset Information

0

Pros and cons of the tuberculosis drugome approach--an empirical analysis.


ABSTRACT: Drug-resistant Mycobacterium tuberculosis (MTB), the causative pathogen of tuberculosis (TB), has become a serious threat to global public health. Yet the development of novel drugs against MTB has been lagging. One potentially powerful approach to drug development is computation-aided repositioning of current drugs. However, the effectiveness of this approach has rarely been examined. Here we select the "TB drugome" approach--a protein structure-based method for drug repositioning for tuberculosis treatment--to (1) experimentally validate the efficacy of the identified drug candidates for inhibiting MTB growth, and (2) computationally examine how consistently drug candidates are prioritized, considering changes in input data. Twenty three drugs in the TB drugome were tested. Of them, only two drugs (tamoxifen and 4-hydroxytamoxifen) effectively suppressed MTB growth at relatively high concentrations. Both drugs significantly enhanced the inhibitory effects of three first-line anti-TB drugs (rifampin, isoniazid, and ethambutol). However, tamoxifen is not a top-listed drug in the TB drugome, and 4-hydroxytamoxifen is not approved for use in humans. Computational re-examination of the TB drugome indicated that the rankings were subject to technical and data-related biases. Thus, although our results support the effectiveness of the TB drugome approach for identifying drugs that can potentially be repositioned for stand-alone applications or for combination treatments for TB, the approach requires further refinements via incorporation of additional biological information. Our findings can also be extended to other structure-based drug repositioning methods.

SUBMITTER: Chen FC 

PROVIDER: S-EPMC4074101 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pros and cons of the tuberculosis drugome approach--an empirical analysis.

Chen Feng-Chi FC   Liao Yu-Chieh YC   Huang Jie-Mao JM   Lin Chieh-Hua CH   Chen Yih-Yuan YY   Dou Horng-Yunn HY   Hsiung Chao Agnes CA  

PloS one 20140627 6


Drug-resistant Mycobacterium tuberculosis (MTB), the causative pathogen of tuberculosis (TB), has become a serious threat to global public health. Yet the development of novel drugs against MTB has been lagging. One potentially powerful approach to drug development is computation-aided repositioning of current drugs. However, the effectiveness of this approach has rarely been examined. Here we select the "TB drugome" approach--a protein structure-based method for drug repositioning for tuberculo  ...[more]

Similar Datasets

| S-EPMC1764161 | biostudies-literature
| S-EPMC3297111 | biostudies-literature
| S-EPMC6693330 | biostudies-literature
| S-EPMC7746428 | biostudies-literature
| S-EPMC7520695 | biostudies-literature
| S-EPMC3771104 | biostudies-literature
| S-EPMC4037752 | biostudies-literature
| S-EPMC8269107 | biostudies-literature
| S-EPMC4637118 | biostudies-literature
| S-EPMC7536576 | biostudies-literature