Project description:αA-crystallin and αB-crystallin are members of the small heat shock protein family and function as molecular chaperones and major lens structural proteins. Although numerous studies have examined their chaperone-like activities in vitro, little is known about the proteins they protect in vivo. To elucidate the relationships between chaperone function, substrate binding, and human cataract formation, we used proteomic and mass spectrometric methods to analyze the effect of mutations associated with hereditary human cataract formation on protein abundance in αA-R49C and αB-R120G knock-in mutant lenses. Compared with age-matched wild type lenses, 2-day-old αA-R49C heterozygous lenses demonstrated the following: increased crosslinking (15-fold) and degradation (2.6-fold) of αA-crystallin; increased association between αA-crystallin and filensin, actin, or creatine kinase B; increased acidification of βB1-crystallin; increased levels of grifin; and an association between βA3/A1-crystallin and αA-crystallin. Homozygous αA-R49C mutant lenses exhibited increased associations between αA-crystallin and βB3-, βA4-, βA2-crystallins, and grifin, whereas levels of βB1-crystallin, gelsolin, and calpain 3 decreased. The amount of degraded glutamate dehydrogenase, α-enolase, and cytochrome c increased more than 50-fold in homozygous αA-R49C mutant lenses. In αB-R120G mouse lenses, our analyses identified decreased abundance of phosphoglycerate mutase, several β- and γ-crystallins, and degradation of αA- and αB-crystallin early in cataract development. Changes in the abundance of hemoglobin and histones with the loss of normal α-crystallin chaperone function suggest that these proteins also play important roles in the biochemical mechanisms of hereditary cataracts. Together, these studies offer a novel insight into the putative in vivo substrates of αA- and αB-crystallin.
Project description:PurposeTo investigate how cataract-linked mutations affect the gradient refractive index (GRIN) and lens opacification in mouse lenses and whether there is any effect on the optics of the lens from treatment with an oxysterol compound.MethodsA total of 35 mice including wild-type and knock-in mutants (Cryaa-R49C and Cryab-R120G) were used in these experiments: 26 mice were treated with topical VP1-001, an oxysterol, in one eye and vehicle in the other, and nine mice were untreated controls. Slit lamp biomicroscopy was used to analyze the lens in live animals and to provide apparent cataract grades. Refractive index in the lenses of 64 unfixed whole mouse eyes was calculated from measurements with X-ray phase tomography based on X-ray Talbot interferometry with a synchrotron radiation source.ResultsHeterozygous Cryaa-R49C lenses had slightly irregularly shaped contours in the center of the GRIN and distinct disturbances of the gradient index at the anterior and posterior poles. Contours near the lens surface were denser in homozygous Cryab-R120G lenses. Treatment with topical VP1-001, an oxysterol, showed an improvement in refractive index profiles in 61% of lenses and this was supported by a reduction in apparent lens opacity grade by 1.0 in 46% of live mice.ConclusionsThese results indicate that α-crystallin mutations alter the refractive index gradient of mouse lenses in distinct ways and suggest that topical treatment with VP1-001 may improve lens transparency and refractive index contours in some lenses with mutations.
Project description:The molecular chaperones, α-crystallins, belong to the small heat shock protein (sHSP) family and prevent the aggregation and insolubilization of client proteins. Studies in vivo have shown that the chaperone activity of the α-crystallins is raised or lowered in various disease states. Therefore, the development of tools to control chaperone activity may provide avenues for therapeutic intervention, as well as enable a molecular understanding of chaperone function. The major human lens α-crystallins, αA- (HAA) and αB- (HAB), share 57% sequence identity and show similar activity towards some clients, but differing activities towards others. Notably, both crystallins contain the "α-crystallin domain" (ACD, the primary client binding site), like all other members of the sHSP family. Here we show that RNA aptamers selected for HAA, in vitro, exhibit specific affinity to HAA but do not bind HAB. Significantly, these aptamers also exclude the ACD. This study thus demonstrates that RNA aptamers against sHSPs can be designed that show high affinity and specificity - yet exclude the primary client binding region - thereby facilitating the development of RNA aptamer-based therapeutic intervention strategies.
Project description:Interaction among crystallins is required for the maintenance of lens transparency. Deamidation is one of the most common post-translational modifications in crystallins, which results in incorrect interaction and leads to aggregate formation. Various studies have established interaction among the α- and β-crystallins. Here, we investigated the effects of the deamidation of αA- and αB-crystallins on their interaction with βA3-crystallin using surface plasmon resonance (SPR) and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) methods. SPR analysis confirmed adherence of WT αA- and WT αB-crystallins and their deamidated mutants with βA3-crystallin. The deamidated mutants of αA-crystallin (αA N101D and αA N123D) displayed lower adherence propensity for βA3-crystallin relative to the binding affinity shown by WT αA-crystallin. Among αB-crystallin mutants, αB N78D displayed higher adherence propensity whereas αB N146D mutant showed slightly lower binding affinity for βA3-crystallin relative to that shown by WT αB-crystallin. Under the in vivo condition (FLIM-FRET), both αA-deamidated mutants (αA N101D and αA N123D) exhibited strong interaction with βA3-crystallin (32±4% and 36±4% FRET efficiencies, respectively) compared to WT αA-crystallin (18±4%). Similarly, the αB N78D and αB N146D mutants showed strong interaction (36±4% and 22±4% FRET efficiencies, respectively) with βA3-crystallin compared to 18±4% FRET efficiency of WT αB-crystallin. Further, FLIM-FRET analysis of the C-terminal domain (CTE), N-terminal domain (NTD), and core domain (CD) of αA- and αB-crystallins with βA3-crystallin suggested that interaction sites most likely reside in the αA CTE and αB NTD regions, respectively, as these domains showed the highest FRET efficiencies. Overall, results suggest that similar to WT αA- and WTαB-crystallins, the deamidated mutants showed strong interactionfor βA3-crystallin. Variable in vitro and in vivo interactions are most likely due to the mutant's large size oligomers, reduced hydrophobicity, and altered structures. Together, the results suggest that deamidation of α-crystallin may facilitate greater interaction and the formation of large oligomers with other crystallins, and this may contribute to the cataractogenic mechanism.
Project description:ObjectiveUnderstanding the mechanisms of cataract formation is important for age-related and hereditary cataracts caused by mutations in lens protein genes. Lens proteins of the crystallin gene families α-, β-, and γ-crystallin are the most abundant proteins in the lens. Single point mutations in crystallin genes cause autosomal dominant cataracts in multigenerational families. Our previous proteomic and RNAseq studies identified genes and proteins altered in the early stages of cataract formation in mouse models. Histones H2A, H2B, and H4 increase in abundance in αA- and αB-crystallin mutant mouse lenses and in cultured cells expressing the mutant form of αA-crystallin linked with hereditary cataracts.ResultsIn this study of histones in mutant lenses, we extracted histones from adult mouse lenses from cryaa-R49C and cryab-R120G mutant knock-in mice. We characterized the histones using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF)-mass spectrometric analysis and gel electrophoresis and characterized the lens nucleus morphology using electron microscopy (EM). The relative abundance of histone H3 protein decreased in lenses from cryaa-R49C mutant mice and the relative abundance of histone H2 increased in these lenses. Electron microscopy of nuclei from cryaa-R49C-homozygous mutant mouse lenses revealed a pronounced alteration in the distribution of heterochromatin.
Project description:The small heat shock protein αA-crystallin is a molecular chaperone important for the optical properties of the vertebrate eye lens. It forms heterogeneous oligomeric ensembles. We determined the structures of human αA-crystallin oligomers by combining cryo-electron microscopy, cross-linking/mass spectrometry, NMR spectroscopy and molecular modeling. The different oligomers can be interconverted by the addition or subtraction of tetramers, leading to mainly 12-, 16- and 20-meric assemblies in which interactions between N-terminal regions are important. Cross-dimer domain-swapping of the C-terminal region is a determinant of αA-crystallin heterogeneity. Human αA-crystallin contains two cysteines, which can form an intramolecular disulfide in vivo. Oxidation in vitro requires conformational changes and oligomer dissociation. The oxidized oligomers, which are larger than reduced αA-crystallin and destabilized against unfolding, are active chaperones and can transfer the disulfide to destabilized substrate proteins. The insight into the structure and function of αA-crystallin provides a basis for understanding its role in the eye lens.
Project description:The vertebrate eye lens is an unusual organ in that most of its cells lack nuclei and the ability to replace aging protein. The small heat shock protein α-crystallins evolved to become key components of this lens, possibly because of their ability to prevent aggregation of aging protein that would otherwise lead to lens opacity. Most vertebrates express two α-crystallins, αA- and αB-crystallin, and mutations in each are linked to human cataract. In a mouse knockout model only the loss of αA-crystallin led to early-stage lens cataract. We have used the zebrafish as a model system to investigate the role of α-crystallins during lens development. Interestingly, while zebrafish express one lens-specific αA-crystallin gene (cryaa), they express two αB-crystallin genes, with one evolving lens specificity (cryaba) and the other retaining the broad expression of its mammalian ortholog (cryabb). In this study we used individual mutant zebrafish lines for all three α-crystallin genes to determine the impact of their loss on age-related cataract. Surprisingly, unlike mouse knockout models, we found that the loss of the αBa-crystallin gene cryaba led to an increase in lens opacity compared to cryaa null fish at 24 months of age. Loss of αA-crystallin did not increase the prevalence of cataract. We also used single cell RNA-Seq and RT-qPCR data to show a shift in the lens expression of zebrafish α-crystallins between 5 and 10 days post fertilization (dpf), with 5 and 6 dpf lenses expressing cryaa almost exclusively, and expression of cryaba and cryabb becoming more prominent after 10 dpf. These data show that cryaa is the primary α-crystallin during early lens development, while the protective role for cryaba becomes more important during lens aging. This study is the first to quantify cataract prevalence in wild-type zebrafish, showing that lens opacities develop in approximately 25% of fish by 18 months of age. None of the three α-crystallin mutants showed a compensatory increase in the expression of the remaining two crystallins, or in the abundant βB1-crystallin. Overall, these findings indicate an ontogenetic shift in the functional importance of individual α-crystallins during zebrafish lens development. Our finding that the lens-specific zebrafish αBa-crystallin plays the leading role in preventing age-related cataract adds a new twist to our understanding of vertebrate lens evolution.
Project description:Earlier we reported that low molecular weight (LMW) peptides accumulate in aging human lens tissue and that among the LMW peptides, the chaperone inhibitor peptide αA66-80, derived from α-crystallin protein, is one of the predominant peptides. We showed that in vitro αA66-80 induces protein aggregation. The current study was undertaken to determine whether LMW peptides are also present in guinea pig lens tissue subjected to hyperbaric oxygen (HBO) in vivo. The nuclear opacity induced by HBO in guinea pig lens is the closest animal model for studying age-related cataract formation in humans. A LMW peptide profile by mass spectrometry showed the presence of an increased amount of LMW peptides in HBO-treated guinea pig lenses compared to age-matched controls. Interestingly, the mass spectrometric data also showed that the chaperone inhibitor peptide αA66-80 accumulates in HBO-treated guinea pig lens. Following incubation of synthetic chaperone inhibitor peptide αA66-80 with α-crystallin from guinea pig lens extracts, we observed a decreased ability of α-crystallin to inhibit the amorphous aggregation of the target protein alcohol dehydrogenase and the formation of large light scattering aggregates, similar to those we have observed with human α-crystallin and αA66-80 peptide. Further, time-lapse recordings showed that a preformed complex of α-crystallin and αA66-80 attracted additional crystallin molecules to form even larger aggregates. These results demonstrate that LMW peptide-mediated cataract development in aged human lens and in HBO-induced lens opacity in the guinea pig may have common molecular pathways.
Project description:The molecular chaperone αB-crystallin, the major player in maintaining the transparency of the eye lens, prevents stress-damaged and aging lens proteins from aggregation. In nonlenticular cells, it is involved in various neurological diseases, diabetes, and cancer. Given its structural plasticity and dynamics, structure analysis of αB-crystallin presented hitherto a formidable challenge. Here we present a pseudoatomic model of a 24-meric αB-crystallin assembly obtained by a triple hybrid approach combining data from cryoelectron microscopy, NMR spectroscopy, and structural modeling. The model, confirmed by cross-linking and mass spectrometry, shows that the subunits interact within the oligomer in different, defined conformations. We further present the molecular architectures of additional well-defined αB-crystallin assemblies with larger or smaller numbers of subunits, provide the mechanism how "heterogeneity" is achieved by a small set of defined structural variations, and analyze the factors modulating the oligomer equilibrium of αB-crystallin and thus its chaperone activity.
Project description:Recent studies have suggested that the isomerization/racemization of aspartate residues in proteins increases in aged tissues. One such residue is Asp151 in lens-specific αA-crystallin. Although many isomerization/racemization sites have been reported in various proteins, the factors that lead to those modifications in proteins in vivo remain obscure. Therefore, an in vitro system is needed to assess the mechanisms of modifications of Asp under various conditions. Deamidation of Asn to Asp in proteins occurs more rapidly than isomerization/racemization of Asp, although the reaction passes through the same intermediate in both pathways. Here, therefore, we replaced Asp151 in human lens αA-crystallin with Asn by using site-directed mutagenesis. The recombinant protein was expressed in Escherichia coli and used to investigate the deamidation/isomerization/racemization of Asn151 after incubation at 50°C for various durations and under different pH. After incubation, the mutant αA-crystallin was subjected to enzymatic digestion followed by liquid chromatography-MS/MS to evaluate the ratio of modifications in Asn151-containing peptides. The Asp151Asn αA-crystallin mutant showed rapid deamidation to Asp with the formation of specific Asp isomers. In particular, deamidation increased greatly under basic conditions. By contrast, subunit-subunit interactions between αA-crystallin and αB-crystallin had little effect on the modification of Asn151. Our findings suggest that the Asp151Asn αA-crystallin mutant represents a good in vitro model protein to assess deamidation, isomerization, and the racemization intermediates. Furthermore, our in vitro results show a different trend from in vivo data, implying the presence of specific factors that induce racemization from L-Asp to D-Asp residues in vivo.