Wnts' fashion statement: from body stature to dysplasia.
Ontology highlight
ABSTRACT: Bone is constantly being made and remodeled to maintain bone volume and calcium homeostasis. Even small changes in the dosage, location and duration of int/Wingless (Wnt) signaling affect skeletal development and homeostasis. Wnt/?-catenin signaling controls cell fate determination, proliferation and survival by affecting a balance between bone-forming osteoblast and bone-resorbing osteoclast cell differentiation. During early skeletal development, Wnt/?-catenin signaling is required in directing mesenchymal progenitor cells toward the osteoblast lineage. Later, Wnt/?-catenin in chondrocytes of the growth plate promotes chondrocyte survival, hypertrophic differentiation and endochondral ossification. Gain- or loss-of-function mutations in the Wnt signaling components are causally linked to high or low bone mass in mice and humans. Inactivation of Wnt/?-catenin signaling leads to imbalance between bone formation and resorption because of accelerated osteoclastogenesis due to decline in the levels of osteoprotegerin (OPG) secreted by osteoblasts or directly via Frizzled 8 (Fzd8). In this review, we provide a landscape of the Wnt pathway components in influencing progenitor cell differentiation toward osteoblasts or osteoclasts under physiological conditions as well as pathological disorders resulting in various skeletal dysplasia syndromes.
SUBMITTER: Malhotra D
PROVIDER: S-EPMC4078412 | biostudies-literature | 2014
REPOSITORIES: biostudies-literature
ACCESS DATA