Genomic era analyses of RNA secondary structure and RNA-binding proteins reveal their significance to post-transcriptional regulation in plants.
Ontology highlight
ABSTRACT: The eukaryotic transcriptome is regulated both transcriptionally and post-transcriptionally. Transcriptional control was the major focus of early research efforts, while more recently post-transcriptional mechanisms have gained recognition for their significant regulatory importance. At the heart of post-transcriptional regulatory pathways are cis- and trans-acting features and factors including RNA secondary structure as well as RNA-binding proteins and their recognition sites on target RNAs. Recent advances in genomic methodologies have significantly improved our understanding of both RNA secondary structure and RNA-binding proteins and their regulatory effects within the eukaryotic transcriptome. In this review, we focus specifically on the collection of these regulatory moieties in plant transcriptomes. We describe the approaches for studying RNA secondary structure and RNA-protein interaction sites, with an emphasis on recent methodological advances that produce transcriptome-wide datasets. We discuss how these methods that include genome-wide RNA secondary structure determination and RNA-protein interaction site mapping are significantly improving our understanding of the functions of these two elements in post-transcriptional regulation. Finally, we delineate the need for additional genome-wide studies of RNA secondary structure and RNA-protein interactions in plants.
SUBMITTER: Silverman IM
PROVIDER: S-EPMC4079699 | biostudies-literature | 2013 May
REPOSITORIES: biostudies-literature
ACCESS DATA