Unknown

Dataset Information

0

PARP-1 hyperactivation and reciprocal elevations in intracellular Ca2+ during ROS-induced nonapoptotic cell death.


ABSTRACT: The generation of reactive oxygen species (ROS) has been implicated in the pathogenesis of renal ischemia/reperfusion injury, and many other pathological conditions. DNA strand breaks caused by ROS lead to the activation of poly(ADP-ribose)polymerase-1 (PARP-1), the excessive activation of which can result in cell death. We have utilized a model in which 2,3,5-tris(glutathion-S-yl)hydroquinone (TGHQ), a nephrotoxic and nephrocarcinogenic metabolite of hydroquinone, causes ROS-dependent cell death in human renal proximal tubule epithelial cells (HK-2), to further elucidate the role of PARP-1 in ROS-dependent cell death. TGHQ-induced ROS generation, DNA strand breaks, hyperactivation of PARP-1, rapid depletion of nicotinamide adenine dinucleotide (NAD), elevations in intracellular Ca(2+) concentrations, and subsequent nonapoptotic cell death in both a PARP- and Ca(2+)-dependent manner. Thus, inhibition of PARP-1 with PJ34 completely blocked TGHQ-mediated accumulation of poly(ADP-ribose) polymers and NAD consumption, and delayed HK-2 cell death. In contrast, chelation of intracellular Ca(2+) with BAPTA completely abrogated TGHQ-induced cell death. Ca(2+) chelation also attenuated PARP-1 hyperactivation. Conversely, inhibition of PARP-1 modulated TGHQ-mediated changes in Ca(2+) homeostasis. Interestingly, PARP-1 hyperactivation was not accompanied by the translocation of apoptosis-inducing factor (AIF) from mitochondria to the nucleus, a process usually associated with PARP-dependent cell death. Thus, pathways coupling PARP-1 hyperactivation to cell death are likely to be context-dependent, and therapeutic strategies designed to target PARP-1 need to recognize such variability. Our studies provide new insights into PARP-1-mediated nonapoptotic cell death, during which PARP-1 hyperactivation and elevations in intracellular Ca(2+) are reciprocally coupled to amplify ROS-induced nonapoptotic cell death.

SUBMITTER: Zhang F 

PROVIDER: S-EPMC4081636 | biostudies-literature | 2014 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

PARP-1 hyperactivation and reciprocal elevations in intracellular Ca2+ during ROS-induced nonapoptotic cell death.

Zhang Fengjiao F   Xie Ruiye R   Munoz Frances M FM   Lau Serrine S SS   Monks Terrence J TJ  

Toxicological sciences : an official journal of the Society of Toxicology 20140420 1


The generation of reactive oxygen species (ROS) has been implicated in the pathogenesis of renal ischemia/reperfusion injury, and many other pathological conditions. DNA strand breaks caused by ROS lead to the activation of poly(ADP-ribose)polymerase-1 (PARP-1), the excessive activation of which can result in cell death. We have utilized a model in which 2,3,5-tris(glutathion-S-yl)hydroquinone (TGHQ), a nephrotoxic and nephrocarcinogenic metabolite of hydroquinone, causes ROS-dependent cell deat  ...[more]

Similar Datasets

| S-EPMC3223446 | biostudies-literature
| S-EPMC3063739 | biostudies-literature
2021-10-31 | GSE156073 | GEO
| S-EPMC4366798 | biostudies-other
| S-EPMC3340088 | biostudies-other
| S-EPMC6760246 | biostudies-literature
| S-EPMC3460944 | biostudies-literature
| S-EPMC18926 | biostudies-literature
| S-EPMC4075432 | biostudies-literature
| S-EPMC3367386 | biostudies-literature